
How do you solve \[{\tan ^2}x - 1 = 0\].
Answer
539.1k+ views
Hint: In this question, we have a trigonometric function and to solve this we used the formula for factor; power of ‘a’ is two \[\left( 2 \right)\] minus power of ‘b’ is two\[\left( 2 \right)\]. The expression of power of ‘a’ is two \[\left( 2 \right)\] minus power of ‘b’ is two \[\left( 2 \right)\]is called the difference of squares. And this formula is expressed as below.
\[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
This is the formula for the difference of squares.
Complete step by step answer:
Let’s come to the question, in the question the data is given as below.
\[{\tan ^2}x - 1 = 0\]
Then we used the difference of the square formula. The above equation is written as.
\[\left( {\tan x - 1} \right)\left( {\tan x + 1} \right) = 0\]
We know that, if the product of any number of terms is equal to zero then one of the terms must equal to zero. Then,
\[
\tan x - 1 = 0 \\
\tan x = 1 \\
\]
And,
\[
\tan x + 1 = 0 \\
\tan x = - 1 \\
\]
We know that for tangent function,
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right) = 1\]
And,
\[\tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right) = - 1\]
Then we find the value of\[x\]for tangent function.
Thus,
\[ \Rightarrow \tan x = 1 = \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right)\] for \[0\]to\[2\pi \].
And,
\[ \Rightarrow \tan x = - 1 = \tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for \[0\] to \[2\pi \].
Therefore, the value of \[x\]are \[\left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right),\left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for domain \[\left( {0 - 2\pi } \right)\].
Note:
We know that, we find the factor of \[\left( {{a^2} - {b^2}} \right)\]form type.
First, we want to calculate the factor of the above formula.
Then,
\[ \Rightarrow {a^2} - {b^2}\]
In the above expression, we can add and subtract the\[ab\]. By adding and subtracting the\[ab\], there is no effect in the above expression.
Then,
The above expression is written as below.
\[{a^2} - {b^2} + ab - ab\]
This is written as below form.
\[ \Rightarrow {a^2} - ab + ab - {b^2}\]
Then we take the common, in the first two we take the\[a\], is common and the last two we take the\[b\], is common.
Then the above expression is written as below.
\[a\left( {a - b} \right) + b\left( {a - b} \right)\]
By solving the above expression, the result would be as below.
\[\therefore \left( {a - b} \right)\left( {a + b} \right)\]
Then, we prove that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
\[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
This is the formula for the difference of squares.
Complete step by step answer:
Let’s come to the question, in the question the data is given as below.
\[{\tan ^2}x - 1 = 0\]
Then we used the difference of the square formula. The above equation is written as.
\[\left( {\tan x - 1} \right)\left( {\tan x + 1} \right) = 0\]
We know that, if the product of any number of terms is equal to zero then one of the terms must equal to zero. Then,
\[
\tan x - 1 = 0 \\
\tan x = 1 \\
\]
And,
\[
\tan x + 1 = 0 \\
\tan x = - 1 \\
\]
We know that for tangent function,
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right) = 1\]
And,
\[\tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right) = - 1\]
Then we find the value of\[x\]for tangent function.
Thus,
\[ \Rightarrow \tan x = 1 = \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right)\] for \[0\]to\[2\pi \].
And,
\[ \Rightarrow \tan x = - 1 = \tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for \[0\] to \[2\pi \].
Therefore, the value of \[x\]are \[\left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right),\left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for domain \[\left( {0 - 2\pi } \right)\].
Note:
We know that, we find the factor of \[\left( {{a^2} - {b^2}} \right)\]form type.
First, we want to calculate the factor of the above formula.
Then,
\[ \Rightarrow {a^2} - {b^2}\]
In the above expression, we can add and subtract the\[ab\]. By adding and subtracting the\[ab\], there is no effect in the above expression.
Then,
The above expression is written as below.
\[{a^2} - {b^2} + ab - ab\]
This is written as below form.
\[ \Rightarrow {a^2} - ab + ab - {b^2}\]
Then we take the common, in the first two we take the\[a\], is common and the last two we take the\[b\], is common.
Then the above expression is written as below.
\[a\left( {a - b} \right) + b\left( {a - b} \right)\]
By solving the above expression, the result would be as below.
\[\therefore \left( {a - b} \right)\left( {a + b} \right)\]
Then, we prove that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

