Answer
Verified
406.2k+ views
Hint: In order to determine the value of the above question, convert the decimal into fraction and use the trigonometric table to find the angle which is in the interval $\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$ whose sine is\[\dfrac{1}{2}\] to get the required result.
Complete step by step solution:
Given,
$\sin (x) = 0.5$
Write decimal value into the fraction
$
\sin (x) = 0.5 \\
\sin (x) = \dfrac{5}{{10}} \\
\sin (x) = \dfrac{1}{2} \\
$
Transposing sine from LHS to RHS
$x = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$
We know that ${\sin ^{ - 1}}\theta $denotes an angle in the interval $\left[ {\dfrac{{ - \pi
}}{2},\dfrac{\pi }{2}} \right]$ whose sine is $x$ for $x \in \left[ { - 1,1} \right].$
Therefore,
$x = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$= An angle in $\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}}
\right]$, whose sine is $\dfrac{1}{2}$.
From the trigonometric table we have,
$\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$
Transposing sin from left-hand side to right-hand side
$x = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}$
Therefore, the value of x is equal to $\dfrac{\pi }{6}$.
Note:
1. In Mathematics the inverse trigonometric functions (every so often additionally called anti- trigonometric functions or cyclomatic function) are the reverse elements of the mathematical functions In particular, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are utilized to get a point from any of the point's mathematical proportions. Reverse trigonometric functions are generally utilized in designing, route, material science, and calculation.
2. In inverse trigonometric function, the domain are the ranges of corresponding trigonometric functions and the range are the domain of the corresponding trigonometric function.
3. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
4. Periodic Function= A function $f(x)$ is said to be a periodic function if there exists a real number T > 0 such that $f(x + T) = f(x)$ for all x.
Complete step by step solution:
Given,
$\sin (x) = 0.5$
Write decimal value into the fraction
$
\sin (x) = 0.5 \\
\sin (x) = \dfrac{5}{{10}} \\
\sin (x) = \dfrac{1}{2} \\
$
Transposing sine from LHS to RHS
$x = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$
We know that ${\sin ^{ - 1}}\theta $denotes an angle in the interval $\left[ {\dfrac{{ - \pi
}}{2},\dfrac{\pi }{2}} \right]$ whose sine is $x$ for $x \in \left[ { - 1,1} \right].$
Therefore,
$x = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$= An angle in $\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}}
\right]$, whose sine is $\dfrac{1}{2}$.
From the trigonometric table we have,
$\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$
Transposing sin from left-hand side to right-hand side
$x = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}$
Therefore, the value of x is equal to $\dfrac{\pi }{6}$.
Note:
1. In Mathematics the inverse trigonometric functions (every so often additionally called anti- trigonometric functions or cyclomatic function) are the reverse elements of the mathematical functions In particular, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are utilized to get a point from any of the point's mathematical proportions. Reverse trigonometric functions are generally utilized in designing, route, material science, and calculation.
2. In inverse trigonometric function, the domain are the ranges of corresponding trigonometric functions and the range are the domain of the corresponding trigonometric function.
3. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
4. Periodic Function= A function $f(x)$ is said to be a periodic function if there exists a real number T > 0 such that $f(x + T) = f(x)$ for all x.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE