How do you solve \[\ln \left( {{x}^{2}} \right)=4\]?
Answer
Verified
438k+ views
Hint:In the given question, we have been asked to find the value of ‘x’ and it is given that \[\ln \left( {{x}^{2}} \right)=4\]. In order to solve the question, first we need to use the basic property of logarithms i.e. \[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\] and \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\]. Then we simplify the equation further to get the possible values of ‘x’. After applying the properties of logarithm, we will solve the equation in a way we solve general linear equations. Then, we will get the required solution.
Formula used:
\[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\]
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to\[{{b}^{y}}=x\].
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{2}} \right)=4\]
As, we know that
\[\ln \left( {{a}^{b}} \right)=b\ln a\]
Applying \[\ln \left( {{a}^{b}} \right)=b\ln a\] in the given question, we get
\[\Rightarrow 2\ln \left( x \right)=4\]
Multiplying both the sides of the equation by 2, we get
\[\Rightarrow \dfrac{2\ln \left( x \right)}{2}=\dfrac{4}{2}\]
Simplifying the above equation, we get
\[\Rightarrow \ln \left( x \right)=2\]
Using the definition of log,
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to \[{{b}^{y}}=x\].
Applying the above property, we get
\[\Rightarrow x={{e}^{2}}\]
By using the calculator,
\[\Rightarrow {{e}^{2}}=7.389\]
Therefore, the possible value of ‘x’ is \[{{e}^{2}}\] or 7.389.
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
\[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\]
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to\[{{b}^{y}}=x\].
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{2}} \right)=4\]
As, we know that
\[\ln \left( {{a}^{b}} \right)=b\ln a\]
Applying \[\ln \left( {{a}^{b}} \right)=b\ln a\] in the given question, we get
\[\Rightarrow 2\ln \left( x \right)=4\]
Multiplying both the sides of the equation by 2, we get
\[\Rightarrow \dfrac{2\ln \left( x \right)}{2}=\dfrac{4}{2}\]
Simplifying the above equation, we get
\[\Rightarrow \ln \left( x \right)=2\]
Using the definition of log,
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to \[{{b}^{y}}=x\].
Applying the above property, we get
\[\Rightarrow x={{e}^{2}}\]
By using the calculator,
\[\Rightarrow {{e}^{2}}=7.389\]
Therefore, the possible value of ‘x’ is \[{{e}^{2}}\] or 7.389.
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE