Answer
Verified
425.1k+ views
Hint:Here in this given equation is a linear equation with two variables. Here we have to solve for one variable. To solve this equation for y by using arithmetic operation we can shift the x variable to the right hand side of the equation then solve the equation for y and on further simplification we get the required solution for the above equation.
Complete step by step solution:
Given \[y - 9 = x\].
We can see that ‘x’ is on the right hand side of the equation and no need to change it.
We need to transpose ‘9’ to the right hand side of the equation by adding 9 on the right hand side of the equation.
\[ \Rightarrow y = x + 9\]
This is the required solution.M
If we observe the obtained solution we notice that it is in the form of the equation slope intercept form. That is \[y = mx + c\], where ‘m’ is slope and ‘c’ is y-intercept.
It is in the exact slope intercept form no need to rearrange the equation,
\[ \Rightarrow y = x + 9\], where slope is \[1\] and the intercept is \[9\].
Note: By putting different values of x and then solving the equation, we can find the values of y. The algebraic equation or an expression is a combination of variables and constants, it also contains the coefficient. Generally we denote the variables with the alphabets. Here both ‘x’ and ‘y’ are variables. The numerals are known as constants and here \[9\] is constant. The numeral of a variable is known as co-efficient and here \[1\] is coefficient of ‘x’.
Complete step by step solution:
Given \[y - 9 = x\].
We can see that ‘x’ is on the right hand side of the equation and no need to change it.
We need to transpose ‘9’ to the right hand side of the equation by adding 9 on the right hand side of the equation.
\[ \Rightarrow y = x + 9\]
This is the required solution.M
If we observe the obtained solution we notice that it is in the form of the equation slope intercept form. That is \[y = mx + c\], where ‘m’ is slope and ‘c’ is y-intercept.
It is in the exact slope intercept form no need to rearrange the equation,
\[ \Rightarrow y = x + 9\], where slope is \[1\] and the intercept is \[9\].
Note: By putting different values of x and then solving the equation, we can find the values of y. The algebraic equation or an expression is a combination of variables and constants, it also contains the coefficient. Generally we denote the variables with the alphabets. Here both ‘x’ and ‘y’ are variables. The numerals are known as constants and here \[9\] is constant. The numeral of a variable is known as co-efficient and here \[1\] is coefficient of ‘x’.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE