
How do you solve for y in \[y - 9 = x\]?
Answer
539.1k+ views
Hint:Here in this given equation is a linear equation with two variables. Here we have to solve for one variable. To solve this equation for y by using arithmetic operation we can shift the x variable to the right hand side of the equation then solve the equation for y and on further simplification we get the required solution for the above equation.
Complete step by step solution:
Given \[y - 9 = x\].
We can see that ‘x’ is on the right hand side of the equation and no need to change it.
We need to transpose ‘9’ to the right hand side of the equation by adding 9 on the right hand side of the equation.
\[ \Rightarrow y = x + 9\]
This is the required solution.M
If we observe the obtained solution we notice that it is in the form of the equation slope intercept form. That is \[y = mx + c\], where ‘m’ is slope and ‘c’ is y-intercept.
It is in the exact slope intercept form no need to rearrange the equation,
\[ \Rightarrow y = x + 9\], where slope is \[1\] and the intercept is \[9\].
Note: By putting different values of x and then solving the equation, we can find the values of y. The algebraic equation or an expression is a combination of variables and constants, it also contains the coefficient. Generally we denote the variables with the alphabets. Here both ‘x’ and ‘y’ are variables. The numerals are known as constants and here \[9\] is constant. The numeral of a variable is known as co-efficient and here \[1\] is coefficient of ‘x’.
Complete step by step solution:
Given \[y - 9 = x\].
We can see that ‘x’ is on the right hand side of the equation and no need to change it.
We need to transpose ‘9’ to the right hand side of the equation by adding 9 on the right hand side of the equation.
\[ \Rightarrow y = x + 9\]
This is the required solution.M
If we observe the obtained solution we notice that it is in the form of the equation slope intercept form. That is \[y = mx + c\], where ‘m’ is slope and ‘c’ is y-intercept.
It is in the exact slope intercept form no need to rearrange the equation,
\[ \Rightarrow y = x + 9\], where slope is \[1\] and the intercept is \[9\].
Note: By putting different values of x and then solving the equation, we can find the values of y. The algebraic equation or an expression is a combination of variables and constants, it also contains the coefficient. Generally we denote the variables with the alphabets. Here both ‘x’ and ‘y’ are variables. The numerals are known as constants and here \[9\] is constant. The numeral of a variable is known as co-efficient and here \[1\] is coefficient of ‘x’.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

