
How do you solve for y in \[x + 7y = 0\]?
Answer
552k+ views
Hint:Here in this given equation is a linear equation with two variables. Here we have to solve for one variable. To solve this equation for y by using arithmetic operation we can shift the x variable to the right hand side of the equation then solve the equation for y and on further simplification we get the required solution for the above equation.
Complete step by step solution:
Given \[x + 7y = 0\].
Now we need to transpose the variable ‘x’ to the right hand side of the equation. So subtract ‘x’ on both sides of the equation.
\[x - x + 7y = 0 - x\]
\[7y = - x\]
Now divide the whole equation by 7 we have,
\[\dfrac{{7y}}{7} = - \dfrac{x}{7}\]
\[ \Rightarrow y = - \dfrac{x}{7}\]
This is the required solution.
If we observe the obtained solution we notice that it is in the form of the equation slope intercept form. That is \[y = mx + c\], where ‘m’ is slope and ‘c’ is y-intercept.
If we rearrange the obtained solution we have
\[ \Rightarrow y = - \dfrac{1}{7}x + 0\], where slope is \[ - \dfrac{1}{7}\] and the intercept is \[0\].
If the intercept is zero means that if we draw the graph of the given equation it passes through origin.
Note: By putting different values of x and then solving the equation, we can find the values of y. The algebraic equation or an expression is a combination of variables and constants, it also contains the coefficient. Generally we denote the variables with the alphabets. Here both ‘x’ and ‘y’ are variables. The numerals are known as constants and here \[0\] is constant or no constant here. The numeral of a variable is known as co-efficient and here \[ - \dfrac{1}{7}\] is coefficient of ‘x’.
Complete step by step solution:
Given \[x + 7y = 0\].
Now we need to transpose the variable ‘x’ to the right hand side of the equation. So subtract ‘x’ on both sides of the equation.
\[x - x + 7y = 0 - x\]
\[7y = - x\]
Now divide the whole equation by 7 we have,
\[\dfrac{{7y}}{7} = - \dfrac{x}{7}\]
\[ \Rightarrow y = - \dfrac{x}{7}\]
This is the required solution.
If we observe the obtained solution we notice that it is in the form of the equation slope intercept form. That is \[y = mx + c\], where ‘m’ is slope and ‘c’ is y-intercept.
If we rearrange the obtained solution we have
\[ \Rightarrow y = - \dfrac{1}{7}x + 0\], where slope is \[ - \dfrac{1}{7}\] and the intercept is \[0\].
If the intercept is zero means that if we draw the graph of the given equation it passes through origin.
Note: By putting different values of x and then solving the equation, we can find the values of y. The algebraic equation or an expression is a combination of variables and constants, it also contains the coefficient. Generally we denote the variables with the alphabets. Here both ‘x’ and ‘y’ are variables. The numerals are known as constants and here \[0\] is constant or no constant here. The numeral of a variable is known as co-efficient and here \[ - \dfrac{1}{7}\] is coefficient of ‘x’.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

