
How do you solve for u in \[8u = 3u + 35\] ?
Answer
540k+ views
Hint:We have to solve this algebraic equation \[8u = 3u + 35\] and find the value of ‘u’. So, shift the variable terms to one side and constants on the other. Thus, 3u and 8u should be shifted to one side to get subtracted and then keep only ‘u’ to one side and shift all the terms to another to calculate its
value.
Complete step by step solution:
We are given with the algebraic expression \[8u = 3u + 35\].
Now, this equation contains variables and constants which are separated by an arithmetic operatic that is addition. Always remember, only like terms are added or subtracted. That means, constant terms would be subtracted or added to constant terms only and variable terms would be added or subtracted from the variable only.
For example, 5+2=7, in this both the 5 and 2 are constant terms so they got added but addition of 5x+2 is not possible because 5x is a variable term and 2 is a constant, therefore addition or subtraction of unlike terms is not possible.
While multiplication of unlike terms is possible. For example, \[9 \times a = 9a\]or\[2x \times 8 = 16x\].
Similarly, division of unlike terms is also possible.
Now, we have to solve, \[8u = 3u + 35\]
In this equation, 8u and 3u are variable terms and 35 is constant. Therefore, 8u and 3u can be added or subtracted. So, shifting the 3u from RHS to LHS.
\[ \Rightarrow 8u = 3u + 35\]
\[ \Rightarrow 8u - 3u = 35\]
While shifting the terms from one side to another, signs of the terms would also change. 3u on RHS was positive (assume as\[8u = + 3u + 35\]) so on coming to LHS +3u would become -3u.
\[ \Rightarrow 5u = 35\]
Now this 5u term is actually\[5 \times u\], so to find the value of u, we need to shift 5 from LHS to RHS with change in sign, here it is in multiplication with u, whereas on RHS 5 would be in division.
\[
\Rightarrow 5 \times u = 35 \\
\Rightarrow u = \dfrac{{35}}{5} \\
\Rightarrow u = 7 \\
\]
Hence, the solution of this given algebraic equation is 7.
Note: Changing of sign is must while shifting the terms from one side to another.
Variable: variable are those terms whose values keep on changing from time to time. In the algebraic expressions or equations, the letters or alphabets basically represent the variables.
Constant: these are the terms whose values are always fixed and do not change. For example, numbers, integers, pi (22/7) etc.
value.
Complete step by step solution:
We are given with the algebraic expression \[8u = 3u + 35\].
Now, this equation contains variables and constants which are separated by an arithmetic operatic that is addition. Always remember, only like terms are added or subtracted. That means, constant terms would be subtracted or added to constant terms only and variable terms would be added or subtracted from the variable only.
For example, 5+2=7, in this both the 5 and 2 are constant terms so they got added but addition of 5x+2 is not possible because 5x is a variable term and 2 is a constant, therefore addition or subtraction of unlike terms is not possible.
While multiplication of unlike terms is possible. For example, \[9 \times a = 9a\]or\[2x \times 8 = 16x\].
Similarly, division of unlike terms is also possible.
Now, we have to solve, \[8u = 3u + 35\]
In this equation, 8u and 3u are variable terms and 35 is constant. Therefore, 8u and 3u can be added or subtracted. So, shifting the 3u from RHS to LHS.
\[ \Rightarrow 8u = 3u + 35\]
\[ \Rightarrow 8u - 3u = 35\]
While shifting the terms from one side to another, signs of the terms would also change. 3u on RHS was positive (assume as\[8u = + 3u + 35\]) so on coming to LHS +3u would become -3u.
\[ \Rightarrow 5u = 35\]
Now this 5u term is actually\[5 \times u\], so to find the value of u, we need to shift 5 from LHS to RHS with change in sign, here it is in multiplication with u, whereas on RHS 5 would be in division.
\[
\Rightarrow 5 \times u = 35 \\
\Rightarrow u = \dfrac{{35}}{5} \\
\Rightarrow u = 7 \\
\]
Hence, the solution of this given algebraic equation is 7.
Note: Changing of sign is must while shifting the terms from one side to another.
Variable: variable are those terms whose values keep on changing from time to time. In the algebraic expressions or equations, the letters or alphabets basically represent the variables.
Constant: these are the terms whose values are always fixed and do not change. For example, numbers, integers, pi (22/7) etc.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Differentiate between Food chain and Food web class 10 biology CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

A sum of 10000 is invested at the rate of 8 per year class 10 maths CBSE

