Answer

Verified

337.5k+ views

**Hint:**This question involves an equation having a variable x as an exponent. So, we will use the concept of logarithms to solve for x in \[{{5}^{2x}}=20\] we will start by taking log on both sides by applying the logarithm property \[{{a}^{b}}=b\log a\] and \[{{\log }_{x}}x=1\]. First we have to know that by simple basic math simplifications and operations like addition, multiplication we cannot find the solution to these kinds of problems. We have been given \[{{5}^{2x}}=20\] in the question and we have to solve for x.

\[\Rightarrow {{5}^{2x}}=20\]

**Complete step-by-step solution:**

Firstly we have to apply log on both sides that is the left and right hand sides of the expression. After the application of the log on both sides and also basic property of \[{{a}^{b}}=b\log a\] we get,

\[\Rightarrow {{\log }_{5}}\left( {{5}^{2x}} \right)={{\log }_{5}}20\]

\[\Rightarrow 2x{{\log }_{5}}5={{\log }_{5}}20\]

We know that by the basic logarithm application that log of any number or variable to the base of the same then it will be one. That is \[{{\log }_{x}}x=1\] so by using this basic property of logarithm we get the expression reduced as follows:

\[\Rightarrow 2x={{\log }_{5}}20\]

Here the reduced equation can be further reduced into the equation by using basic arithmetic logic operation by sending the 2 which is in the left hand side to the right hand side so that it will come to the denominator of the right hand side so it will be further reduced as follows…

\[\Rightarrow x=\dfrac{{{\log }_{5}}20}{2}\]

This equation can be further deduced into a numerical value by knowing the value of the logarithm. Here we use the property of logarithms which is \[{{\log }_{x}}x=1\] and \[{{\log }_{y}}{{x}^{2}}=2{{\log }_{y}}x\].

\[\Rightarrow \dfrac{{{\log }_{5}}\left( 5\times 4 \right)}{2}\]

Here we use the basic property of logarithms that is \[{{\log }_{n}}xy={{\log }_{n}}x+{{\log }_{n}}y\] then equation will be reduced as follows

\[\Rightarrow \dfrac{{{\log }_{5}}5+{{\log }_{5}}4}{2}\]

Here we use the property of logarithm which is \[{{\log }_{x}}x=1\] then the equation will be reduced as follows

\[\Rightarrow x=\dfrac{1+2{{\log }_{5}}2}{2}\]

\[\approx 0.930677\]

**Note:**We must be careful while performing the calculations and a person who is solving the problems of these type must be having a bit knowledge of the logarithms and must be knowing the basic formula and technique of logarithms of \[{{\log }_{x}}x=1\] and so. We must not make any mistakes in solving problems like if we don’t apply the property of \[{{\log }_{x}}x=1\]we can't do further reduction in the calculation of variables.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a stanza wise summary of money madness class 11 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Which neighbouring country does not share a boundary class 9 social science CBSE

What is Whales collective noun class 10 english CBSE