Answer

Verified

372.9k+ views

**Hint:**We first simplify the equation $3\cot 2x-\sqrt{3}=0$ to find the value of $\cot 2x$. Then we find the principal value of x for which $3\cot 2x-\sqrt{3}=0$. In that domain, equal value of the same ratio gives equal angles. We find the angle value for x. At the end we also find the general solution for the equation $3\cot 2x-\sqrt{3}=0$.

**Complete step-by-step solution:**

It’s given that $3\cot 2x-\sqrt{3}=0$. We simplify the equation to get

$\begin{align}

& 3\cot 2x-\sqrt{3}=0 \\

& \Rightarrow \cot 2x=\dfrac{\sqrt{3}}{3}=\dfrac{1}{\sqrt{3}} \\

\end{align}$

The value in fraction is $\dfrac{1}{\sqrt{3}}$. We need to find x for which $\cot 2x=\dfrac{1}{\sqrt{3}}$.

We know that in the principal domain or the periodic value of $0\le x\le \pi $ for $\sin x$, if we get $\cot a=\cot b$ where $0\le a,b\le \pi $ then $a=b$.

We have the value of $\cot \left( \dfrac{\pi }{3} \right)$ as $\dfrac{1}{\sqrt{3}}$. $0<\dfrac{\pi }{3}<\pi $.

Therefore, $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}=\cot \left( \dfrac{\pi }{3} \right)$ which gives $2x=\dfrac{\pi }{3}$.

For $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the value of x is $x=\dfrac{\pi }{6}$.

We also can show the solutions (primary and general) of the equation $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$ through the graph. We take $y=\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$. We got two equations $y=\cot \left( 2x \right)$ and $y=\dfrac{1}{\sqrt{3}}$. We place them on the graph and find the solutions as their intersecting points.

We can see the primary solution in the interval $0\le x\le \pi $ is the point A as $x=\dfrac{\pi }{6}$.

All the other intersecting points of the curve and the line are general solutions.

**Note:**Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $0\le x\le \pi $. In that case we have to use the formula $x=n\pi +a$ for $\cot \left( x \right)=\cot a$ where $0\le a\le \pi $. For our given problem $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the general solution will be $2x=n\pi +\dfrac{\pi }{3}$. Here $n\in \mathbb{Z}$.

The simplified form of the general solution will be \[x=\dfrac{n\pi }{2}+\dfrac{\pi }{6}\].

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Which are the Top 10 Largest Countries of the World?

The provincial president of the constituent assembly class 11 social science CBSE

Write the 6 fundamental rights of India and explain in detail