
How do you solve $3\cot 2x-\sqrt{3}=0$?
Answer
444k+ views
Hint: We first simplify the equation $3\cot 2x-\sqrt{3}=0$ to find the value of $\cot 2x$. Then we find the principal value of x for which $3\cot 2x-\sqrt{3}=0$. In that domain, equal value of the same ratio gives equal angles. We find the angle value for x. At the end we also find the general solution for the equation $3\cot 2x-\sqrt{3}=0$.
Complete step-by-step solution:
It’s given that $3\cot 2x-\sqrt{3}=0$. We simplify the equation to get
$\begin{align}
& 3\cot 2x-\sqrt{3}=0 \\
& \Rightarrow \cot 2x=\dfrac{\sqrt{3}}{3}=\dfrac{1}{\sqrt{3}} \\
\end{align}$
The value in fraction is $\dfrac{1}{\sqrt{3}}$. We need to find x for which $\cot 2x=\dfrac{1}{\sqrt{3}}$.
We know that in the principal domain or the periodic value of $0\le x\le \pi $ for $\sin x$, if we get $\cot a=\cot b$ where $0\le a,b\le \pi $ then $a=b$.
We have the value of $\cot \left( \dfrac{\pi }{3} \right)$ as $\dfrac{1}{\sqrt{3}}$. $0<\dfrac{\pi }{3}<\pi $.
Therefore, $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}=\cot \left( \dfrac{\pi }{3} \right)$ which gives $2x=\dfrac{\pi }{3}$.
For $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the value of x is $x=\dfrac{\pi }{6}$.
We also can show the solutions (primary and general) of the equation $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$ through the graph. We take $y=\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$. We got two equations $y=\cot \left( 2x \right)$ and $y=\dfrac{1}{\sqrt{3}}$. We place them on the graph and find the solutions as their intersecting points.
We can see the primary solution in the interval $0\le x\le \pi $ is the point A as $x=\dfrac{\pi }{6}$.
All the other intersecting points of the curve and the line are general solutions.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $0\le x\le \pi $. In that case we have to use the formula $x=n\pi +a$ for $\cot \left( x \right)=\cot a$ where $0\le a\le \pi $. For our given problem $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the general solution will be $2x=n\pi +\dfrac{\pi }{3}$. Here $n\in \mathbb{Z}$.
The simplified form of the general solution will be \[x=\dfrac{n\pi }{2}+\dfrac{\pi }{6}\].
Complete step-by-step solution:
It’s given that $3\cot 2x-\sqrt{3}=0$. We simplify the equation to get
$\begin{align}
& 3\cot 2x-\sqrt{3}=0 \\
& \Rightarrow \cot 2x=\dfrac{\sqrt{3}}{3}=\dfrac{1}{\sqrt{3}} \\
\end{align}$
The value in fraction is $\dfrac{1}{\sqrt{3}}$. We need to find x for which $\cot 2x=\dfrac{1}{\sqrt{3}}$.
We know that in the principal domain or the periodic value of $0\le x\le \pi $ for $\sin x$, if we get $\cot a=\cot b$ where $0\le a,b\le \pi $ then $a=b$.
We have the value of $\cot \left( \dfrac{\pi }{3} \right)$ as $\dfrac{1}{\sqrt{3}}$. $0<\dfrac{\pi }{3}<\pi $.
Therefore, $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}=\cot \left( \dfrac{\pi }{3} \right)$ which gives $2x=\dfrac{\pi }{3}$.
For $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the value of x is $x=\dfrac{\pi }{6}$.
We also can show the solutions (primary and general) of the equation $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$ through the graph. We take $y=\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$. We got two equations $y=\cot \left( 2x \right)$ and $y=\dfrac{1}{\sqrt{3}}$. We place them on the graph and find the solutions as their intersecting points.

We can see the primary solution in the interval $0\le x\le \pi $ is the point A as $x=\dfrac{\pi }{6}$.
All the other intersecting points of the curve and the line are general solutions.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $0\le x\le \pi $. In that case we have to use the formula $x=n\pi +a$ for $\cot \left( x \right)=\cot a$ where $0\le a\le \pi $. For our given problem $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the general solution will be $2x=n\pi +\dfrac{\pi }{3}$. Here $n\in \mathbb{Z}$.
The simplified form of the general solution will be \[x=\dfrac{n\pi }{2}+\dfrac{\pi }{6}\].
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
