
How do you simplify $\dfrac{{\sqrt 4 }}{{36}}$ ?
Answer
540k+ views
Hint: To solve such questions that include surds and indices, a basic knowledge of the rules of surds is necessary. The question can be solved by evaluating the expression under the root and then by further simplifying the expression to get the final answer.
Complete step by step answer:
The given expression to simplify is $\dfrac{{\sqrt 4 }}{{36}}$ $...(i)$
Now we know that ${(2)^2} = 2 \times 2 = 4$ therefore,
$\sqrt 4 = {(4)^{1/2}}$
Which on further simplification gives us
${(4)^{1/2}} = {({2^2})^{1/2}}$
Applying the law of exponents that states ${({a^m})^n} = {a^{m \times n}}$ to the above expression,
${(4)^{1/2}} = {2^{2 \times \dfrac{1}{2}}}$
On simplifying the powers of $2$ we get
$\Rightarrow \sqrt 4 = 2$ $...(ii)$
Now substituting the value of the equation $(ii)$ in the equation $(i)$ we get,
$\Rightarrow \dfrac{{\sqrt 4 }}{{36}} = \dfrac{2}{{36}}$
Dividing and simplifying the above expression to get
$\Rightarrow \dfrac{1}{{18}}$
Hence, on simplifying $\dfrac{{\sqrt 4 }}{{36}}$ we get $\dfrac{1}{{18}}$
Therefore, $\dfrac{{\sqrt 4 }}{{36}} = \dfrac{1}{{18}}$
Additional Information:
A surd can be defined as an irrational number that can be expressed with roots, such as $\sqrt 2$ or $\sqrt[4]{{15}}$ . An index on the other hand can be defined as the power, or exponent, of a number. For example, ${2^3}$ has an index of $3$ . When we deal with exponents or powers of a number, a root often refers to a number that is repeatedly multiplied by itself a certain fixed number of times to get another number. A radical number can be written as shown below:
$\sqrt[n]{x}$ , where $n$ is the degree, and the root sign is known as the radical sign. The value $x$ is known as the radicand and the expression as a whole is known as the radical.
Note: While solving these types of questions it always proves extremely helpful if students remember the fundamental rules of surds and exponents. Some of the rules such as ${({a^m})^n} = {a^{m \times n}}$ and $\sqrt {a \times b} = \sqrt a \times \sqrt b$ are used a lot of times and help to simplify the question to a great extent.
Complete step by step answer:
The given expression to simplify is $\dfrac{{\sqrt 4 }}{{36}}$ $...(i)$
Now we know that ${(2)^2} = 2 \times 2 = 4$ therefore,
$\sqrt 4 = {(4)^{1/2}}$
Which on further simplification gives us
${(4)^{1/2}} = {({2^2})^{1/2}}$
Applying the law of exponents that states ${({a^m})^n} = {a^{m \times n}}$ to the above expression,
${(4)^{1/2}} = {2^{2 \times \dfrac{1}{2}}}$
On simplifying the powers of $2$ we get
$\Rightarrow \sqrt 4 = 2$ $...(ii)$
Now substituting the value of the equation $(ii)$ in the equation $(i)$ we get,
$\Rightarrow \dfrac{{\sqrt 4 }}{{36}} = \dfrac{2}{{36}}$
Dividing and simplifying the above expression to get
$\Rightarrow \dfrac{1}{{18}}$
Hence, on simplifying $\dfrac{{\sqrt 4 }}{{36}}$ we get $\dfrac{1}{{18}}$
Therefore, $\dfrac{{\sqrt 4 }}{{36}} = \dfrac{1}{{18}}$
Additional Information:
A surd can be defined as an irrational number that can be expressed with roots, such as $\sqrt 2$ or $\sqrt[4]{{15}}$ . An index on the other hand can be defined as the power, or exponent, of a number. For example, ${2^3}$ has an index of $3$ . When we deal with exponents or powers of a number, a root often refers to a number that is repeatedly multiplied by itself a certain fixed number of times to get another number. A radical number can be written as shown below:
$\sqrt[n]{x}$ , where $n$ is the degree, and the root sign is known as the radical sign. The value $x$ is known as the radicand and the expression as a whole is known as the radical.
Note: While solving these types of questions it always proves extremely helpful if students remember the fundamental rules of surds and exponents. Some of the rules such as ${({a^m})^n} = {a^{m \times n}}$ and $\sqrt {a \times b} = \sqrt a \times \sqrt b$ are used a lot of times and help to simplify the question to a great extent.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

