Answer
Verified
425.7k+ views
Hint: We are given a term as $\dfrac{1}{(1+i)}$ . We are asked to simplify it, we can see clearly. We can read it as $1$ is being divided by $1+i$, so we will learn about how the compared number can being divided, we will learn what we conjugate, how do we find them, we will work on some examples to get a grip, then we will solve $\dfrac{1}{(1+i)}$ by multiplying it by its conjugate and then simplifying it.
Complete step-by-step solution:
We are given a fraction as $\dfrac{1}{(1+i)}$. We can read them as $1$ is being divided by $1+i$. So, we will learn how to divide the number in complex form. To divide the number in complex form we will follow the following steps.
Step: 1 Firstly we find the conjugate of the denominator.
Step: 2 We will multiply numerator and denominator of the given fraction with the conjugate of the denominator.
Step: 3 We will then distribute the term mean. We will produce the term in numerator as well as in denominator.
Step: 4 We will simplify the power of $i$ always, remember that ${{i}^{2}}$ is given as $-1$
Step: 5 We will then combine the like terms that mean we will total infinity terms with each other and only constant with each other.
Step: 6 we will simplify our answer lastly in standard complex form. We will learn better by one example say we have $\dfrac{3+2i}{4+2i}$
We have numerator $3+2i$ and denominator as $4+2i$
So Step: 1 we will find conjugate of $4+2i$, simply the conjugate of $a+ib$ is $a-ib$ hence conjugate of $4+2i$
$\begin{align}
& =4-(-2i) \\
& =4+2i \\
\end{align}$
Step: 2 We will multiply numerator and denominator by $4+2i$
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}$
Step: 3 We will multiply them in the numerator as well as in denominator
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}=\dfrac{12+4{{i}^{2}}+6i+8i}{16-4{{i}^{2}}+8i-8i}$
Step: 4 We simplify I we use ${{i}^{2}}=-1$
$\Rightarrow \dfrac{12-4+6i+8i}{16-(-4)+8i-8i}$
Now we combine like term and simplify
$\begin{align}
& =\dfrac{8+14i}{20} \\
& \Rightarrow 12-4=8,\,\,6i+8i=14\,\,and\,\,\,-8i+8i=0 \\
\end{align}$
Now we will reduce above form into the standard form
$\begin{align}
& =\dfrac{8+14i}{20} \\
& =\dfrac{8}{20}+\dfrac{14i}{20} \\
\end{align}$
We will reduce the term a bit.
$=\dfrac{2}{5}+\dfrac{7}{10}i$
Here we get
$\begin{align}
& \dfrac{3+2i}{4-2i} \\
& =\dfrac{2}{5}+\dfrac{2i}{10} \\
\end{align}$
This is how we divide the terms in the complex number.
Now we write on our problem, we have $\dfrac{1}{(1+i)}$ conjugate of $1+i$ is $1-i$
So, we multiply numerator and denominator by $1-i$
$\dfrac{1}{(1+i)}=\dfrac{1}{1+i}\times \dfrac{1-i}{1-i}$
Simplifying by multiple we get
$\Rightarrow \dfrac{1-i}{1-i+i-{{i}^{2}}}$
Simplifying we get,
${{i}^{2}}=-1$
So, we get,
$\Rightarrow \dfrac{1-i}{1-i+i+1}$
Now we add the like term and simplify and we get
$=\dfrac{1-i}{2}$
Now we write it to standard form
$=\dfrac{1}{2}-\dfrac{i}{2}$
So, we get $\dfrac{1}{(1+i)}$ in answer as $=\dfrac{1}{2}-\dfrac{i}{2}$ into its simple form.
Note: When we have a complex term remember we cannot add the first constant with the total term. First, we cannot add variables with constant i.e. \[x+2=2x\] in many similar ways $2i+2=4i$ is wrong. We can always add like terms, we do addition after simplification of another power I.e after changing ${{i}^{2}}=-1$ we need to be careful with calculation.
Complete step-by-step solution:
We are given a fraction as $\dfrac{1}{(1+i)}$. We can read them as $1$ is being divided by $1+i$. So, we will learn how to divide the number in complex form. To divide the number in complex form we will follow the following steps.
Step: 1 Firstly we find the conjugate of the denominator.
Step: 2 We will multiply numerator and denominator of the given fraction with the conjugate of the denominator.
Step: 3 We will then distribute the term mean. We will produce the term in numerator as well as in denominator.
Step: 4 We will simplify the power of $i$ always, remember that ${{i}^{2}}$ is given as $-1$
Step: 5 We will then combine the like terms that mean we will total infinity terms with each other and only constant with each other.
Step: 6 we will simplify our answer lastly in standard complex form. We will learn better by one example say we have $\dfrac{3+2i}{4+2i}$
We have numerator $3+2i$ and denominator as $4+2i$
So Step: 1 we will find conjugate of $4+2i$, simply the conjugate of $a+ib$ is $a-ib$ hence conjugate of $4+2i$
$\begin{align}
& =4-(-2i) \\
& =4+2i \\
\end{align}$
Step: 2 We will multiply numerator and denominator by $4+2i$
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}$
Step: 3 We will multiply them in the numerator as well as in denominator
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}=\dfrac{12+4{{i}^{2}}+6i+8i}{16-4{{i}^{2}}+8i-8i}$
Step: 4 We simplify I we use ${{i}^{2}}=-1$
$\Rightarrow \dfrac{12-4+6i+8i}{16-(-4)+8i-8i}$
Now we combine like term and simplify
$\begin{align}
& =\dfrac{8+14i}{20} \\
& \Rightarrow 12-4=8,\,\,6i+8i=14\,\,and\,\,\,-8i+8i=0 \\
\end{align}$
Now we will reduce above form into the standard form
$\begin{align}
& =\dfrac{8+14i}{20} \\
& =\dfrac{8}{20}+\dfrac{14i}{20} \\
\end{align}$
We will reduce the term a bit.
$=\dfrac{2}{5}+\dfrac{7}{10}i$
Here we get
$\begin{align}
& \dfrac{3+2i}{4-2i} \\
& =\dfrac{2}{5}+\dfrac{2i}{10} \\
\end{align}$
This is how we divide the terms in the complex number.
Now we write on our problem, we have $\dfrac{1}{(1+i)}$ conjugate of $1+i$ is $1-i$
So, we multiply numerator and denominator by $1-i$
$\dfrac{1}{(1+i)}=\dfrac{1}{1+i}\times \dfrac{1-i}{1-i}$
Simplifying by multiple we get
$\Rightarrow \dfrac{1-i}{1-i+i-{{i}^{2}}}$
Simplifying we get,
${{i}^{2}}=-1$
So, we get,
$\Rightarrow \dfrac{1-i}{1-i+i+1}$
Now we add the like term and simplify and we get
$=\dfrac{1-i}{2}$
Now we write it to standard form
$=\dfrac{1}{2}-\dfrac{i}{2}$
So, we get $\dfrac{1}{(1+i)}$ in answer as $=\dfrac{1}{2}-\dfrac{i}{2}$ into its simple form.
Note: When we have a complex term remember we cannot add the first constant with the total term. First, we cannot add variables with constant i.e. \[x+2=2x\] in many similar ways $2i+2=4i$ is wrong. We can always add like terms, we do addition after simplification of another power I.e after changing ${{i}^{2}}=-1$ we need to be careful with calculation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE