Answer
Verified
424.8k+ views
Hint: These types of problems are pretty straight forward and are very easy to solve. We need to have a fair knowledge of complex numbers and the different equations and formulae that involves it. The general form of a complex number is \[a+ib\] , where the first part is the real term and the second term is the complex part. Here \[i\] represents iorta and is defined as,
\[\begin{align}
& i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
The easiest way to solve the given problem is to do rationalization of the denominator and then to separate the real and imaginary terms.
Complete step by step answer:
Now we start off with the solution of the given problem as,
We first rationalize the denominator by multiplying the numerator and denominator by the conjugate complex number of the denominator. We now rewrite the given problem as,
\[\begin{align}
& \dfrac{10+i}{4-i} \\
& \Rightarrow \dfrac{\left( 10+i \right)\left( 4+i \right)}{\left( 4-i \right)\left( 4+i \right)} \\
\end{align}\]
We now do multiplication of the complex numbers to get,
\[\Rightarrow \dfrac{40+10i+4i+{{i}^{2}}}{16-{{i}^{2}}}\]
Now, using the relation \[{{i}^{2}}=-1\] we write,
\[\begin{align}
& \Rightarrow \dfrac{40+10i+4i+\left( -1 \right)}{16-\left( -1 \right)} \\
& \Rightarrow \dfrac{40+10i+4i-1}{16+1} \\
& \Rightarrow \dfrac{39+14i}{17} \\
\end{align}\]
Now, we separate the real and imaginary parts of the formed equation, to get the perfect solution, hence we write,
\[\dfrac{39}{17}+\dfrac{14}{17}i\]
Thus the answer to our problem is \[\dfrac{39}{17}+\dfrac{14}{17}i\].
Note: For these type of problems, we need to remember and keep in mind of the general form of complex numbers. The given problem is solved by a simple rationalization of the denominator, followed by simple multiplication of two complex numbers and replacing the relation \[{{i}^{2}}=-1\] . In rationalization, what we do is multiply both the numerator and denominator by the conjugate of the denominator. After all these things we separate the real part and imaginary part and write the hence formed answer.
\[\begin{align}
& i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
The easiest way to solve the given problem is to do rationalization of the denominator and then to separate the real and imaginary terms.
Complete step by step answer:
Now we start off with the solution of the given problem as,
We first rationalize the denominator by multiplying the numerator and denominator by the conjugate complex number of the denominator. We now rewrite the given problem as,
\[\begin{align}
& \dfrac{10+i}{4-i} \\
& \Rightarrow \dfrac{\left( 10+i \right)\left( 4+i \right)}{\left( 4-i \right)\left( 4+i \right)} \\
\end{align}\]
We now do multiplication of the complex numbers to get,
\[\Rightarrow \dfrac{40+10i+4i+{{i}^{2}}}{16-{{i}^{2}}}\]
Now, using the relation \[{{i}^{2}}=-1\] we write,
\[\begin{align}
& \Rightarrow \dfrac{40+10i+4i+\left( -1 \right)}{16-\left( -1 \right)} \\
& \Rightarrow \dfrac{40+10i+4i-1}{16+1} \\
& \Rightarrow \dfrac{39+14i}{17} \\
\end{align}\]
Now, we separate the real and imaginary parts of the formed equation, to get the perfect solution, hence we write,
\[\dfrac{39}{17}+\dfrac{14}{17}i\]
Thus the answer to our problem is \[\dfrac{39}{17}+\dfrac{14}{17}i\].
Note: For these type of problems, we need to remember and keep in mind of the general form of complex numbers. The given problem is solved by a simple rationalization of the denominator, followed by simple multiplication of two complex numbers and replacing the relation \[{{i}^{2}}=-1\] . In rationalization, what we do is multiply both the numerator and denominator by the conjugate of the denominator. After all these things we separate the real part and imaginary part and write the hence formed answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE