Answer
Verified
426k+ views
Hint: To solve these questions, we have to simplify the given expression. The expression can be simplified by simply multiplying the terms given in the parenthesis with one another. On further simplification of the expression obtained after multiplying, we will get the required solution.
Complete step by step answer:
It is given that, $(5 + 3i)(3 - i)$
To simplify the given expression, we need to multiply the terms given in the parenthesis with each other.
Let us multiply the second expression with the first and second term of the first expression, to get
$(5 + 3i)(3 - i) = 5(3 - i) + 3i(3 - i)$
On multiplying the terms we get
$\Rightarrow 5 \times 3 - 5 \times i + 3i \times 3 + 3i \times ( - i)$
On simplifying the above expression we get
$\Rightarrow 15 - 5i + 9i - 3{i^2}$
Adding the like terms that contain $i$ we get
$\Rightarrow 15 - 4i - 3{i^2}$
In imaginary numbers, we know that the value of ${i^2} = - 1$ , where $i$ is an imaginary number. Therefore, by substituting the value ${i^2}$ in the above expression we get
$\Rightarrow 15 - 4i - 3( - 1)$
$\Rightarrow 15 - 4i + 3$
Adding the terms we get
$\Rightarrow 18 - 4i$
Therefore, $(5 + 3i)(3 - i) = 18 - 4i$
Hence on simplifying $(5 + 3i)(3 - i)$ we get $18 - 4i$
Additional information:
A complex number can be defined as a number that can be expressed in the form $a + ib$ where $a$ and $b$ are real numbers and $i$ represents the imaginary number and satisfies the equation ${i^2} = - 1$ . It also means that the value of $i$ is $i = \sqrt { - 1}$ . Since no real number satisfies the two given equations $i$ is called an imaginary number. Complex numbers cannot be marked on the number line.
Note: While solving these questions it is important to note down that complex numbers are represented in the form of $a + ib$ and that the imaginary part in this representation is $b$ and not $\;ib$ . Also, keep in mind to substitute the value of ${i^2}$ in the expression to completely simplify the expression and then add the like terms.
Complete step by step answer:
It is given that, $(5 + 3i)(3 - i)$
To simplify the given expression, we need to multiply the terms given in the parenthesis with each other.
Let us multiply the second expression with the first and second term of the first expression, to get
$(5 + 3i)(3 - i) = 5(3 - i) + 3i(3 - i)$
On multiplying the terms we get
$\Rightarrow 5 \times 3 - 5 \times i + 3i \times 3 + 3i \times ( - i)$
On simplifying the above expression we get
$\Rightarrow 15 - 5i + 9i - 3{i^2}$
Adding the like terms that contain $i$ we get
$\Rightarrow 15 - 4i - 3{i^2}$
In imaginary numbers, we know that the value of ${i^2} = - 1$ , where $i$ is an imaginary number. Therefore, by substituting the value ${i^2}$ in the above expression we get
$\Rightarrow 15 - 4i - 3( - 1)$
$\Rightarrow 15 - 4i + 3$
Adding the terms we get
$\Rightarrow 18 - 4i$
Therefore, $(5 + 3i)(3 - i) = 18 - 4i$
Hence on simplifying $(5 + 3i)(3 - i)$ we get $18 - 4i$
Additional information:
A complex number can be defined as a number that can be expressed in the form $a + ib$ where $a$ and $b$ are real numbers and $i$ represents the imaginary number and satisfies the equation ${i^2} = - 1$ . It also means that the value of $i$ is $i = \sqrt { - 1}$ . Since no real number satisfies the two given equations $i$ is called an imaginary number. Complex numbers cannot be marked on the number line.
Note: While solving these questions it is important to note down that complex numbers are represented in the form of $a + ib$ and that the imaginary part in this representation is $b$ and not $\;ib$ . Also, keep in mind to substitute the value of ${i^2}$ in the expression to completely simplify the expression and then add the like terms.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE