Answer
Verified
400.8k+ views
Hint: We solve the given equation by using the different identity formulas of logarithm like $\ln a-\ln b=\ln \dfrac{a}{b}$, ${{\log }_{e}}a=y\Rightarrow a={{e}^{y}}$. The main step would be to form one single logarithm function instead of two. We solve the linear equation with the help of basic binary operations.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE