
How do you simplify $24\log X-6\log Y$?
Answer
553.8k+ views
Hint: We solve the given equation by using the different identity formulas of logarithm like $\ln a-\ln b=\ln \dfrac{a}{b}$, ${{\log }_{e}}a=y\Rightarrow a={{e}^{y}}$. The main step would be to form one single logarithm function instead of two. We solve the linear equation with the help of basic binary operations.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

