
How do you simplify $24\log X-6\log Y$?
Answer
528.3k+ views
Hint: We solve the given equation by using the different identity formulas of logarithm like $\ln a-\ln b=\ln \dfrac{a}{b}$, ${{\log }_{e}}a=y\Rightarrow a={{e}^{y}}$. The main step would be to form one single logarithm function instead of two. We solve the linear equation with the help of basic binary operations.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

