How do you simplify $24\log X-6\log Y$?
Answer
Verified
440.4k+ views
Hint: We solve the given equation by using the different identity formulas of logarithm like $\ln a-\ln b=\ln \dfrac{a}{b}$, ${{\log }_{e}}a=y\Rightarrow a={{e}^{y}}$. The main step would be to form one single logarithm function instead of two. We solve the linear equation with the help of basic binary operations.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Complete step-by-step solution:
We take the logarithmic identity for the given equation $24\log X-6\log Y$ to find the simplified form.
We have $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$. The subtraction for logarithm works as $\ln a-\ln b=\ln \dfrac{a}{b}$.
We operate the identity $p{{\log }_{x}}a={{\log }_{x}}{{a}^{p}}$ on both parts of the equation $24\log X-6\log Y$.
For $24\log X$, the representations are $p=24,a=X$. So, $24\log X=\log {{X}^{24}}$.
For $6\log Y$, the representations are $p=6,a=Y$. So, $6\log Y=\log {{Y}^{6}}$.
So, $24\log X-6\log Y=\log {{X}^{24}}-\log {{Y}^{6}}$
We operate the subtraction part in $\log {{X}^{24}}-\log {{Y}^{6}}$.
$\log {{X}^{24}}-\log {{Y}^{6}}=\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$
Therefore, the simplified form of the equation $24\log X-6\log Y$ is $\log \dfrac{{{X}^{24}}}{{{Y}^{6}}}$.
Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of $e$ is fixed for $\ln $. We also need to remember that for logarithm function there has to be a domain constraint.
For any ${{\log }_{e}}a$, $a>0$. This means for $24\log X-6\log Y$, $X,Y>0$.
There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE