Answer
Verified
426.6k+ views
Hint:The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $\tan x = \dfrac{{\sin x}}{{\cos x}}$ and $\sec x = \dfrac{1}{{\cos x}}$ . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem and proving the result given to us.
Complete step by step answer:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.Now, we need to make the left and right sides of the equation equal.
L.H.S. $ = 1 + {\tan ^2}x$
As we know that \[\tan x = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]. So, we get,
\[1 + {\left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)^2}\]
\[\Rightarrow 1 + \dfrac{{{{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
\[\dfrac{{{{\left( {{\text{Adjacent Side}}} \right)}^2} + {{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Using Pythagoras Theorem, we know,
\[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Opposite Side}}} \right)^2} + {\left( {{\text{Adjacent Side}}} \right)^2}\]
\[\Rightarrow\dfrac{{{{\left( {{\text{Hypotenuse}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Now, we use the basic trigonometric formula \[\sec x = \dfrac{{\left( {{\text{Hypotenuse}}} \right)}}{{\left( {{\text{Adjacent Side}}} \right)}}\], so we have,
\[{\sec ^2}x = R.H.S.\]
As $ L.H.S=R.H.S$, hence the given identity proved.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Complete step by step answer:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.Now, we need to make the left and right sides of the equation equal.
L.H.S. $ = 1 + {\tan ^2}x$
As we know that \[\tan x = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]. So, we get,
\[1 + {\left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)^2}\]
\[\Rightarrow 1 + \dfrac{{{{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
\[\dfrac{{{{\left( {{\text{Adjacent Side}}} \right)}^2} + {{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Using Pythagoras Theorem, we know,
\[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Opposite Side}}} \right)^2} + {\left( {{\text{Adjacent Side}}} \right)^2}\]
\[\Rightarrow\dfrac{{{{\left( {{\text{Hypotenuse}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Now, we use the basic trigonometric formula \[\sec x = \dfrac{{\left( {{\text{Hypotenuse}}} \right)}}{{\left( {{\text{Adjacent Side}}} \right)}}\], so we have,
\[{\sec ^2}x = R.H.S.\]
As $ L.H.S=R.H.S$, hence the given identity proved.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE