Answer
Verified
425.7k+ views
Hint: We explain the number of ways the position of a point or equation can be expressed in different forms. To form the graph of $r=3\cos \theta $, we need to find its rectangular form. We also explain the ways the representation works for polar and cartesian form. Then we convert the given equation into rectangular form using the relations $x=r\cos \theta ;y=r\sin \theta $.
Complete step-by-step solution:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=3\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=3\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is
$x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$.
We now replace the value of $\cos \theta =\dfrac{x}{r}$ in the equation $r=3\cos \theta $ to get
\[\begin{align}
& r=3\cos \theta \\
& \Rightarrow r=3\left( \dfrac{x}{r} \right) \\
& \Rightarrow {{r}^{2}}=3x \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation.
The revised equation becomes \[\left( {{x}^{2}}+{{y}^{2}} \right)=3x\]. This is an equation of a circle.
Note: In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in the cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Complete step-by-step solution:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=3\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=3\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is
$x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$.
We now replace the value of $\cos \theta =\dfrac{x}{r}$ in the equation $r=3\cos \theta $ to get
\[\begin{align}
& r=3\cos \theta \\
& \Rightarrow r=3\left( \dfrac{x}{r} \right) \\
& \Rightarrow {{r}^{2}}=3x \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation.
The revised equation becomes \[\left( {{x}^{2}}+{{y}^{2}} \right)=3x\]. This is an equation of a circle.
Note: In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in the cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE