Answer
Verified
425.4k+ views
Hint: From the question given, we have been asked to factor the quadratic expression ${{x}^{2}}+5x-36$. We can find the factors for the given quadratic expression by using the process of factorization. By using the process of factorization, we can find the factors for the given quadratic expression. First of all, we have to know about the process of factorization.
Complete step-by-step solution:
By using the product of coefficients and writing it as the sum of the two numbers we will find out the factors. This is the process of factorization.
From the question given, we have been given a quadratic expression ${{x}^{2}}+5x-36$
First of all, we have to multiply the coefficient of \[{{x}^{2}}\] and constant.
By multiplying the coefficient of \[{{x}^{2}}\] and constant, we get \[\Rightarrow 1\times -36=-36\]
Now, we have to write the coefficient of \[x\] as the sum of two numbers and the numbers should be the factors of \[36\].
\[\Rightarrow -36=9\times -4\]
By writing the given expression as above said, we get \[\Rightarrow {{x}^{2}}+9x-4x-36\]
Now, we have to take the common terms out and simplify further to obtain the factors.
By taking the common terms out and simplifying further, we get
\[\Rightarrow x\left( x+9 \right)-4\left( x+9 \right)\]
\[\Rightarrow \left( x-4 \right)\left( x+9 \right)\]
Therefore, \[{{x}^{2}}+5x-36=\left( x-4 \right)\left( x+9 \right)\]
Hence, we got the factors for the given quadratic expression by using the process of factorization.
Note: We should be well aware of the process of factorization. Also, we should be very careful while writing the middle term as a sum of two numbers which is equal to the product of coefficient of first term and constant. Also, we should be very careful while simplifying the expression. This question can also be answered by using the formulae for finding the roots of any quadratic equation in the form of $a{{x}^{2}}+bx+c=0$ is given by $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ . For ${{x}^{2}}+5x-36$ it is given as
$\begin{align}
& \dfrac{-\left( 5 \right)\pm \sqrt{{{\left( 5 \right)}^{2}}-4\left( 1 \right)\left( -36 \right)}}{2\left( 1 \right)}=\dfrac{5\pm \sqrt{{{5}^{2}}+144}}{2} \\
& \Rightarrow \dfrac{-5\pm \sqrt{25+144}}{2}=\dfrac{-5\pm \sqrt{169}}{2} \\
& \Rightarrow \dfrac{-5\pm 13}{2}= -9,4 \\
\end{align}$
As the roots are $9,-4$ the factors will be $\left( x-4 \right)$ and $\left( x+9 \right)$.
Complete step-by-step solution:
By using the product of coefficients and writing it as the sum of the two numbers we will find out the factors. This is the process of factorization.
From the question given, we have been given a quadratic expression ${{x}^{2}}+5x-36$
First of all, we have to multiply the coefficient of \[{{x}^{2}}\] and constant.
By multiplying the coefficient of \[{{x}^{2}}\] and constant, we get \[\Rightarrow 1\times -36=-36\]
Now, we have to write the coefficient of \[x\] as the sum of two numbers and the numbers should be the factors of \[36\].
\[\Rightarrow -36=9\times -4\]
By writing the given expression as above said, we get \[\Rightarrow {{x}^{2}}+9x-4x-36\]
Now, we have to take the common terms out and simplify further to obtain the factors.
By taking the common terms out and simplifying further, we get
\[\Rightarrow x\left( x+9 \right)-4\left( x+9 \right)\]
\[\Rightarrow \left( x-4 \right)\left( x+9 \right)\]
Therefore, \[{{x}^{2}}+5x-36=\left( x-4 \right)\left( x+9 \right)\]
Hence, we got the factors for the given quadratic expression by using the process of factorization.
Note: We should be well aware of the process of factorization. Also, we should be very careful while writing the middle term as a sum of two numbers which is equal to the product of coefficient of first term and constant. Also, we should be very careful while simplifying the expression. This question can also be answered by using the formulae for finding the roots of any quadratic equation in the form of $a{{x}^{2}}+bx+c=0$ is given by $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ . For ${{x}^{2}}+5x-36$ it is given as
$\begin{align}
& \dfrac{-\left( 5 \right)\pm \sqrt{{{\left( 5 \right)}^{2}}-4\left( 1 \right)\left( -36 \right)}}{2\left( 1 \right)}=\dfrac{5\pm \sqrt{{{5}^{2}}+144}}{2} \\
& \Rightarrow \dfrac{-5\pm \sqrt{25+144}}{2}=\dfrac{-5\pm \sqrt{169}}{2} \\
& \Rightarrow \dfrac{-5\pm 13}{2}= -9,4 \\
\end{align}$
As the roots are $9,-4$ the factors will be $\left( x-4 \right)$ and $\left( x+9 \right)$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE