Answer
Verified
426k+ views
Hint: Consider the given quadratic polynomial equal to y. Now, use the completing the square method to factorize the given quadratic polynomial. Use the algebraic identities: - \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\] and \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] to simplify the assumed expression ‘y’. Convert the given polynomial in the form \[\left( x-m \right)\left( x-n \right)\], where m and n are called zeroes of the polynomial. Substitute each term equal to 0 to find the values of x and get the roots.
Complete step-by-step solution:
Here, we have been provided with the quadratic equation: \[{{x}^{2}}+5x-2=0\] and we are asked to factorize it and then solve it.
Now, let us use the method of completing the square to factorize the given quadratic polynomial because here it will be difficult to use the middle term split method. So, using completing the square method, we get,
\[\begin{align}
& \Rightarrow y={{x}^{2}}+5x-2 \\
& \Rightarrow y={{x}^{2}}+2\times \dfrac{5}{2}\times x-2 \\
& \Rightarrow y={{x}^{2}}+2\times \dfrac{5}{2}\times x+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}-2 \\
\end{align}\]
On simplifying the above relation using the identity: - \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& \Rightarrow y={{\left( x+\dfrac{5}{2} \right)}^{2}}-\left( \dfrac{25}{4}+2 \right) \\
& \Rightarrow y={{\left( x+\dfrac{5}{2} \right)}^{2}}-\left( \dfrac{33}{4} \right) \\
\end{align}\]
We can write the above expression as: -
\[\Rightarrow y={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{\sqrt{33}}{2} \right)}^{2}}\]
Using the algebraic identity: - \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\], we get,
\[\Rightarrow y=\left( x+\dfrac{5}{2}+\dfrac{\sqrt{33}}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{\sqrt{33}}{2} \right)\]
\[\Rightarrow y=\left[ x+\left( \dfrac{5+\sqrt{33}}{2} \right) \right]\left[ \left( x+\left( \dfrac{5-\sqrt{33}}{2} \right) \right) \right]\]
Hence, the above relation is the factored form of the given quadratic polynomial.
Now, to solve this polynomial we need to substitute the value of y equal to 0 and find the values of x. So, substituting y = 0, we get,
\[\Rightarrow \left( x+\left( \dfrac{5+\sqrt{33}}{2} \right) \right)\left( x+\left( \dfrac{5-\sqrt{33}}{2} \right) \right)=0\]
Substituting each term equal to 0, we get,
\[\Rightarrow x+\left( \dfrac{5+\sqrt{33}}{2} \right)=0\] or \[x+\left( \dfrac{5-\sqrt{33}}{2} \right)=0\]
\[\Rightarrow x=-\left( \dfrac{5+\sqrt{33}}{2} \right)\] or \[x=-\left( \dfrac{5-\sqrt{33}}{2} \right)\]
Hence, the above two values of x are the solutions of the given quadratic equation.
Note: One may note that here we have factored the polynomial first and the found the solutions. You can apply the reverse process also to get the required relations. What we can do is we will use the discriminant formula to find the two values of x first and then assume the solutions as x = m and x = n. In the final step of the solution we will consider the product \[\left( x-m \right)\left( x-n \right)\] to get the factored form.
Complete step-by-step solution:
Here, we have been provided with the quadratic equation: \[{{x}^{2}}+5x-2=0\] and we are asked to factorize it and then solve it.
Now, let us use the method of completing the square to factorize the given quadratic polynomial because here it will be difficult to use the middle term split method. So, using completing the square method, we get,
\[\begin{align}
& \Rightarrow y={{x}^{2}}+5x-2 \\
& \Rightarrow y={{x}^{2}}+2\times \dfrac{5}{2}\times x-2 \\
& \Rightarrow y={{x}^{2}}+2\times \dfrac{5}{2}\times x+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}-2 \\
\end{align}\]
On simplifying the above relation using the identity: - \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& \Rightarrow y={{\left( x+\dfrac{5}{2} \right)}^{2}}-\left( \dfrac{25}{4}+2 \right) \\
& \Rightarrow y={{\left( x+\dfrac{5}{2} \right)}^{2}}-\left( \dfrac{33}{4} \right) \\
\end{align}\]
We can write the above expression as: -
\[\Rightarrow y={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{\sqrt{33}}{2} \right)}^{2}}\]
Using the algebraic identity: - \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\], we get,
\[\Rightarrow y=\left( x+\dfrac{5}{2}+\dfrac{\sqrt{33}}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{\sqrt{33}}{2} \right)\]
\[\Rightarrow y=\left[ x+\left( \dfrac{5+\sqrt{33}}{2} \right) \right]\left[ \left( x+\left( \dfrac{5-\sqrt{33}}{2} \right) \right) \right]\]
Hence, the above relation is the factored form of the given quadratic polynomial.
Now, to solve this polynomial we need to substitute the value of y equal to 0 and find the values of x. So, substituting y = 0, we get,
\[\Rightarrow \left( x+\left( \dfrac{5+\sqrt{33}}{2} \right) \right)\left( x+\left( \dfrac{5-\sqrt{33}}{2} \right) \right)=0\]
Substituting each term equal to 0, we get,
\[\Rightarrow x+\left( \dfrac{5+\sqrt{33}}{2} \right)=0\] or \[x+\left( \dfrac{5-\sqrt{33}}{2} \right)=0\]
\[\Rightarrow x=-\left( \dfrac{5+\sqrt{33}}{2} \right)\] or \[x=-\left( \dfrac{5-\sqrt{33}}{2} \right)\]
Hence, the above two values of x are the solutions of the given quadratic equation.
Note: One may note that here we have factored the polynomial first and the found the solutions. You can apply the reverse process also to get the required relations. What we can do is we will use the discriminant formula to find the two values of x first and then assume the solutions as x = m and x = n. In the final step of the solution we will consider the product \[\left( x-m \right)\left( x-n \right)\] to get the factored form.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it