Answer

Verified

417.9k+ views

**Hint:**We use both grouping method and vanishing method to find the factor of the problem. We take common terms out to form the multiplied forms. In the case of the vanishing method, we use the value of x which gives the polynomial value 0.

**Complete step-by-step solution:**

We apply the middle-term factoring or grouping to factorise the polynomial.

Factorising a polynomial by grouping is to find the pairs which on taking their common divisor out, give the same remaining number.

In case of $8{{x}^{2}}-16x+6=0$, we break the middle term $-16x$ into two parts of $-12x$ and $-4x$

So, $8{{x}^{2}}-16x+6=0=8{{x}^{2}}-12x-4x+6$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.

Here multiplication for both cases gives $48{{x}^{2}}$. The grouping will be done for $8{{x}^{2}}-12x$ and $-4x+6$. We try to take the common numbers out.

For $8{{x}^{2}}-12x$, we take $4x$ and get $4x\left( 2x-3 \right)$.

For $-4x+6$, we take $-2$ and get $-2\left( 2x-3 \right)$.

The equation becomes $8{{x}^{2}}-16x+6=0=8{{x}^{2}}-12x-4x+6=4x\left( 2x-3 \right)-2\left( 2x-3 \right)$.

Both the terms have $\left( 2x-3 \right)$ in common. We take that term common and get

$\begin{align}

& 8{{x}^{2}}-16x+6=0 \\

& =4x\left( 2x-3 \right)-2\left( 2x-3 \right) \\

& =\left( 2x-3 \right)\left( 4x-2 \right) \\

& =2\left( 2x-3 \right)\left( 2x-1 \right) \\

\end{align}$

**Therefore, the factorisation of $8{{x}^{2}}-16x+6=0$ is $2\left( 2x-3 \right)\left( 2x-1 \right)$.**

**Note:**We find the value of x for which the function $8{{x}^{2}}-16x+6=0$. We can see $f\left( \dfrac{1}{2} \right)=8{{\left( \dfrac{1}{2} \right)}^{2}}-16\times \dfrac{1}{2}+6=2-8+6=0$. So, the root of the $f\left( x \right)=8{{x}^{2}}-16x+6=0$ will be the function $\left( 2x-1 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.

Now, $f\left( x \right)=8{{x}^{2}}-16x+6=2\left( 2x-3 \right)\left( 2x-1 \right)$. We can also do this for $\left( 2x-3 \right)$.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which places in India experience sunrise first and class 9 social science CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE