
How do you factor $5{{x}^{2}}+13x-6$?
Answer
494.4k+ views
Hint: As the given equation is a quadratic equation in one variable, we will use the quadratic formula to find the factors of the given equation. If the given quadratic equation is of the form $a{{x}^{2}}+bx+c=0$ the quadratic formula is given as $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step-by-step solution:
We have been given an equation $5{{x}^{2}}+13x-6$.
We have to find the factors of the given equation.
First we will compare the given equation with the standard quadratic equation which is given by $a{{x}^{2}}+bx+c=0$.
On comparing we get the values $a=5,b=13\And c=-6$
Now, we know that the quadratic formula is given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the values in the above formula we get
$\Rightarrow x=\dfrac{-13\pm \sqrt{{{13}^{2}}-4\times 5\times -6}}{2\times 5}$
Now, on solving the obtained equation we get
$\begin{align}
& \Rightarrow x=\dfrac{-13\pm \sqrt{169+120}}{10} \\
& \Rightarrow x=\dfrac{-13\pm \sqrt{289}}{10} \\
\end{align}$
Now, we know that the value of square root $\sqrt{289}=17$
Now, substituting the value in the above equation and solving further we get
$\Rightarrow x=\dfrac{-13\pm 17}{10}$
Now, we know that a quadratic equation has two roots. We can write the obtained equation as
$\Rightarrow x=\dfrac{-13+17}{10}and\Rightarrow x=\dfrac{-13-17}{10}$
Now, let us first consider
$\Rightarrow x=\dfrac{-13+17}{10}$
On solving we get
$\begin{align}
& \Rightarrow x=\dfrac{4}{10} \\
& \Rightarrow x=\dfrac{2}{5} \\
\end{align}$
Now, let us consider $\Rightarrow x=\dfrac{-13-17}{10}$
On solving we get
$\begin{align}
& \Rightarrow x=\dfrac{-30}{10} \\
& \Rightarrow x=-3 \\
\end{align}$
So the two factors of the equation $5{{x}^{2}}+13x-6$ will be $\left( 5x-3 \right)\left( x-2 \right)$.
Note: Avoid calculation mistakes because single calculation mistakes lead to the incorrect answer. To solve a quadratic equation students can use factorization method, completing the square method or quadratic formula method. When the time is less and we are sure about the quadratic formula, then it is best to use this method. We can cross verify the factors by opening the parenthesis and solving.
Complete step-by-step solution:
We have been given an equation $5{{x}^{2}}+13x-6$.
We have to find the factors of the given equation.
First we will compare the given equation with the standard quadratic equation which is given by $a{{x}^{2}}+bx+c=0$.
On comparing we get the values $a=5,b=13\And c=-6$
Now, we know that the quadratic formula is given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the values in the above formula we get
$\Rightarrow x=\dfrac{-13\pm \sqrt{{{13}^{2}}-4\times 5\times -6}}{2\times 5}$
Now, on solving the obtained equation we get
$\begin{align}
& \Rightarrow x=\dfrac{-13\pm \sqrt{169+120}}{10} \\
& \Rightarrow x=\dfrac{-13\pm \sqrt{289}}{10} \\
\end{align}$
Now, we know that the value of square root $\sqrt{289}=17$
Now, substituting the value in the above equation and solving further we get
$\Rightarrow x=\dfrac{-13\pm 17}{10}$
Now, we know that a quadratic equation has two roots. We can write the obtained equation as
$\Rightarrow x=\dfrac{-13+17}{10}and\Rightarrow x=\dfrac{-13-17}{10}$
Now, let us first consider
$\Rightarrow x=\dfrac{-13+17}{10}$
On solving we get
$\begin{align}
& \Rightarrow x=\dfrac{4}{10} \\
& \Rightarrow x=\dfrac{2}{5} \\
\end{align}$
Now, let us consider $\Rightarrow x=\dfrac{-13-17}{10}$
On solving we get
$\begin{align}
& \Rightarrow x=\dfrac{-30}{10} \\
& \Rightarrow x=-3 \\
\end{align}$
So the two factors of the equation $5{{x}^{2}}+13x-6$ will be $\left( 5x-3 \right)\left( x-2 \right)$.
Note: Avoid calculation mistakes because single calculation mistakes lead to the incorrect answer. To solve a quadratic equation students can use factorization method, completing the square method or quadratic formula method. When the time is less and we are sure about the quadratic formula, then it is best to use this method. We can cross verify the factors by opening the parenthesis and solving.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
