Answer

Verified

388.5k+ views

**Hint:**We need to solve this question by using binomial theorem so that we can find each term here. In this theorem, we expand the polynomial \[{(x + y)^n}\] in a sum which is having the terms in form of \[a{x^b}{y^c}\] where \[b\,and\,c\] are with integers that are not negative with \[b + c = n\] and \[a\] of every term is positive depending on \[n\,and\,b\].

**Formula used:**

\[{\left( {a + b} \right)^n} = \mathop \sum \limits_{k = 0}^n nCk \cdot \left( {{a^{n - k}}{b^k}} \right)\]

**Complete step by step solution:**

By using binomial theorem, we are going to find each term. The formula for binomial theorem is:

\[{\left( {a + b} \right)^n} = \mathop \sum \limits_{k = 0}^n nCk \cdot \left( {{a^{n - k}}{b^k}} \right)\]

According to this formula we can get that \[n\, = \,3\], \[a\, = \,x\], \[b\, = - 2\]. So, after getting the values according to the questions, apply the values in the formula and after that we get:

\[\sum\limits_{k = 0}^3 {\dfrac{{3!}}{{(3 - k)!k!}} \cdot {{(x)}^{3 - k}} \cdot {{( - 2)}^k}} \]

Now, we will start expanding the whole summation, and we will put the value of \[k\] as \[0,1,2,3\] and then we get:

\[ \Rightarrow \dfrac{{3!}}{{(3 - 0)!0!}} \cdot {(x)^{3 - 0}} \cdot {( - 2)^0} + \dfrac{{3!}}{{(3 - 1)!1!}} \cdot {(x)^{3 - 1}} \cdot {( - 2)^1} + \dfrac{{3!}}{{(3 - 2)!2!}} \cdot {(x)^{3 - 2}} \cdot {( - 2)^2} + \dfrac{{3!}}{{(3 - 3)!3!}} \cdot {(x)^{3 - 3}} \cdot {( - 2)^3}\]

Now, by simplifying all the exponents for every term we will get:

\[ \Rightarrow 1{(x)^3}{( - 2)^0} + 3{(x)^2}( - 2) + 3(x){( - 2)^2} + 1{(x)^0}{( - 2)^3}\]

Now, we need to simplify every term:

\[ \Rightarrow {(x)^3} \cdot {( - 2)^0} + 3 \cdot {(x)^2} \cdot {( - 2)^1} + 3 \cdot {(x)^1} \cdot {( - 2)^2} + 1 \cdot {(x)^0} \cdot {( - 2)^3}\]

\[ \therefore{x^3} - 6{(x)^2} - 12x - 8\]

**So, the final answer is \[{x^3} - 6{(x)^2} - 12x - 8\].**

**Additional information:**

Binomial number is a polynomial having two terms. Pascal’s triangle could be a triangular cluster built by summing adjoining components in going before columns. This contains the values of all the binomial coefficients.

**Note:**This method is very easy, and we can quickly get the answer by solving all the equations, but there is another method through which we can solve it and it is called Pascal’s Triangle. Through Pascal’s Triangle method, we can solve the question very easily but it might be a bit complicated.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE