Answer
Verified
424.8k+ views
Hint: We need to solve this question by using binomial theorem so that we can find each term here. In this theorem, we expand the polynomial \[{(x + y)^n}\] in a sum which is having the terms in form of \[a{x^b}{y^c}\] where \[b\,and\,c\] are with integers that are not negative with \[b + c = n\] and \[a\] of every term is positive depending on \[n\,and\,b\].
Formula used:
\[{\left( {a + b} \right)^n} = \mathop \sum \limits_{k = 0}^n nCk \cdot \left( {{a^{n - k}}{b^k}} \right)\]
Complete step by step solution:
By using binomial theorem, we are going to find each term. The formula for binomial theorem is:
\[{\left( {a + b} \right)^n} = \mathop \sum \limits_{k = 0}^n nCk \cdot \left( {{a^{n - k}}{b^k}} \right)\]
According to this formula we can get that \[n\, = \,3\], \[a\, = \,x\], \[b\, = - 2\]. So, after getting the values according to the questions, apply the values in the formula and after that we get:
\[\sum\limits_{k = 0}^3 {\dfrac{{3!}}{{(3 - k)!k!}} \cdot {{(x)}^{3 - k}} \cdot {{( - 2)}^k}} \]
Now, we will start expanding the whole summation, and we will put the value of \[k\] as \[0,1,2,3\] and then we get:
\[ \Rightarrow \dfrac{{3!}}{{(3 - 0)!0!}} \cdot {(x)^{3 - 0}} \cdot {( - 2)^0} + \dfrac{{3!}}{{(3 - 1)!1!}} \cdot {(x)^{3 - 1}} \cdot {( - 2)^1} + \dfrac{{3!}}{{(3 - 2)!2!}} \cdot {(x)^{3 - 2}} \cdot {( - 2)^2} + \dfrac{{3!}}{{(3 - 3)!3!}} \cdot {(x)^{3 - 3}} \cdot {( - 2)^3}\]
Now, by simplifying all the exponents for every term we will get:
\[ \Rightarrow 1{(x)^3}{( - 2)^0} + 3{(x)^2}( - 2) + 3(x){( - 2)^2} + 1{(x)^0}{( - 2)^3}\]
Now, we need to simplify every term:
\[ \Rightarrow {(x)^3} \cdot {( - 2)^0} + 3 \cdot {(x)^2} \cdot {( - 2)^1} + 3 \cdot {(x)^1} \cdot {( - 2)^2} + 1 \cdot {(x)^0} \cdot {( - 2)^3}\]
\[ \therefore{x^3} - 6{(x)^2} - 12x - 8\]
So, the final answer is \[{x^3} - 6{(x)^2} - 12x - 8\].
Additional information:
Binomial number is a polynomial having two terms. Pascal’s triangle could be a triangular cluster built by summing adjoining components in going before columns. This contains the values of all the binomial coefficients.
Note: This method is very easy, and we can quickly get the answer by solving all the equations, but there is another method through which we can solve it and it is called Pascal’s Triangle. Through Pascal’s Triangle method, we can solve the question very easily but it might be a bit complicated.
Formula used:
\[{\left( {a + b} \right)^n} = \mathop \sum \limits_{k = 0}^n nCk \cdot \left( {{a^{n - k}}{b^k}} \right)\]
Complete step by step solution:
By using binomial theorem, we are going to find each term. The formula for binomial theorem is:
\[{\left( {a + b} \right)^n} = \mathop \sum \limits_{k = 0}^n nCk \cdot \left( {{a^{n - k}}{b^k}} \right)\]
According to this formula we can get that \[n\, = \,3\], \[a\, = \,x\], \[b\, = - 2\]. So, after getting the values according to the questions, apply the values in the formula and after that we get:
\[\sum\limits_{k = 0}^3 {\dfrac{{3!}}{{(3 - k)!k!}} \cdot {{(x)}^{3 - k}} \cdot {{( - 2)}^k}} \]
Now, we will start expanding the whole summation, and we will put the value of \[k\] as \[0,1,2,3\] and then we get:
\[ \Rightarrow \dfrac{{3!}}{{(3 - 0)!0!}} \cdot {(x)^{3 - 0}} \cdot {( - 2)^0} + \dfrac{{3!}}{{(3 - 1)!1!}} \cdot {(x)^{3 - 1}} \cdot {( - 2)^1} + \dfrac{{3!}}{{(3 - 2)!2!}} \cdot {(x)^{3 - 2}} \cdot {( - 2)^2} + \dfrac{{3!}}{{(3 - 3)!3!}} \cdot {(x)^{3 - 3}} \cdot {( - 2)^3}\]
Now, by simplifying all the exponents for every term we will get:
\[ \Rightarrow 1{(x)^3}{( - 2)^0} + 3{(x)^2}( - 2) + 3(x){( - 2)^2} + 1{(x)^0}{( - 2)^3}\]
Now, we need to simplify every term:
\[ \Rightarrow {(x)^3} \cdot {( - 2)^0} + 3 \cdot {(x)^2} \cdot {( - 2)^1} + 3 \cdot {(x)^1} \cdot {( - 2)^2} + 1 \cdot {(x)^0} \cdot {( - 2)^3}\]
\[ \therefore{x^3} - 6{(x)^2} - 12x - 8\]
So, the final answer is \[{x^3} - 6{(x)^2} - 12x - 8\].
Additional information:
Binomial number is a polynomial having two terms. Pascal’s triangle could be a triangular cluster built by summing adjoining components in going before columns. This contains the values of all the binomial coefficients.
Note: This method is very easy, and we can quickly get the answer by solving all the equations, but there is another method through which we can solve it and it is called Pascal’s Triangle. Through Pascal’s Triangle method, we can solve the question very easily but it might be a bit complicated.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE