How do you evaluate \[\log \,0.01\]?
Answer
279.6k+ views
Hint: Logarithm of the form \[\log \,a\] has a base of the logarithm as 10. In logarithm we have several properties like \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\] (where \[m\],\[n\] are positive numbers)
\[{{\log }_{a}}a\,\,=\,\,1\], \[\log 1\,=\,0\,\] etc.
Complete step by step solution:
Definition of logarithm:
Every positive real number \[N\] can be expressed in exponential form as \[{{a}^{x}}\,\,=\,\,N\]where ' \[a\]' is also a positive real number different than unity and is called the base and ' \[x\]' is called an exponent. We can write the relation \[{{a}^{x}}\,\,=\,\,N\]in logarithmic form as \[{{\log }_{a}}N\,=\,x\]. Hence \[{{a}^{x}}\,\,=\,\,N\,\,\Leftrightarrow \,\,{{\log }_{a}}N\,=\,x\].
Hence, the logarithm of a number to some base is the exponent by which the base must be raised in order to get that number.
Limitations of logarithm: \[{{\log }_{a}}N\,=\,x\] is defined only when (i)\[N\,>\,0\], (ii) \[a\,>\,0\] (iii) \[a\,\ne \,1\]
We can evaluate \[\log \,0.01\] step by step by transforming it in such a form so that we can apply the known formulae or properties of logarithm.
\[\log \,0.01\] can be written as \[\log \left( \dfrac{1}{100} \right)\].
As \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\].
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,\log 1\,-\,\log 100\,=\,0\,-\,\log {{10}^{2}}\] ……………………………………………………… (i)
also as \[\log 1\,=\,0\] and \[\log {{a}^{n}}\,=\,n\times \log a\](power rule of logarithm) equation (i) reduces to
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,0\,\,-\,\,2\times \log (10)\,\,=\,\,0\,\,-\,\,2\times 1\]
\[\therefore \,\,\,\,\log 0.01\,\,=\,\,-2\].
Note:
> \[\log a\] has the base of the logarithm as 10 whereas \[\log a\] has the base of the logarithm as \[e\], where \[e\] is Napier’s constant. Napier’s constant is an irrational number. The approximate value of Napier’s constant is \[e\,\,=\,\,2.718\].
> For a given value of \[N\], \[{{\log }_{a}}N\] will give us a unique value.
> Logarithm of zero does not exist.
\[{{\log }_{N}}N\,=\,\,1\]
> Logarithms of negative real numbers are not defined in the system of real numbers.
\[{{\log }_{a}}a\,\,=\,\,1\], \[\log 1\,=\,0\,\] etc.
Complete step by step solution:
Definition of logarithm:
Every positive real number \[N\] can be expressed in exponential form as \[{{a}^{x}}\,\,=\,\,N\]where ' \[a\]' is also a positive real number different than unity and is called the base and ' \[x\]' is called an exponent. We can write the relation \[{{a}^{x}}\,\,=\,\,N\]in logarithmic form as \[{{\log }_{a}}N\,=\,x\]. Hence \[{{a}^{x}}\,\,=\,\,N\,\,\Leftrightarrow \,\,{{\log }_{a}}N\,=\,x\].
Hence, the logarithm of a number to some base is the exponent by which the base must be raised in order to get that number.
Limitations of logarithm: \[{{\log }_{a}}N\,=\,x\] is defined only when (i)\[N\,>\,0\], (ii) \[a\,>\,0\] (iii) \[a\,\ne \,1\]
We can evaluate \[\log \,0.01\] step by step by transforming it in such a form so that we can apply the known formulae or properties of logarithm.
\[\log \,0.01\] can be written as \[\log \left( \dfrac{1}{100} \right)\].
As \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\].
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,\log 1\,-\,\log 100\,=\,0\,-\,\log {{10}^{2}}\] ……………………………………………………… (i)
also as \[\log 1\,=\,0\] and \[\log {{a}^{n}}\,=\,n\times \log a\](power rule of logarithm) equation (i) reduces to
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,0\,\,-\,\,2\times \log (10)\,\,=\,\,0\,\,-\,\,2\times 1\]
\[\therefore \,\,\,\,\log 0.01\,\,=\,\,-2\].
Note:
> \[\log a\] has the base of the logarithm as 10 whereas \[\log a\] has the base of the logarithm as \[e\], where \[e\] is Napier’s constant. Napier’s constant is an irrational number. The approximate value of Napier’s constant is \[e\,\,=\,\,2.718\].
> For a given value of \[N\], \[{{\log }_{a}}N\] will give us a unique value.
> Logarithm of zero does not exist.
\[{{\log }_{N}}N\,=\,\,1\]
> Logarithms of negative real numbers are not defined in the system of real numbers.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
