Answer

Verified

347.4k+ views

**Hint:**Logarithm of the form \[\log \,a\] has a base of the logarithm as 10. In logarithm we have several properties like \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\] (where \[m\],\[n\] are positive numbers)

\[{{\log }_{a}}a\,\,=\,\,1\], \[\log 1\,=\,0\,\] etc.

**Complete step by step solution:**

Definition of logarithm:

Every positive real number \[N\] can be expressed in exponential form as \[{{a}^{x}}\,\,=\,\,N\]where ' \[a\]' is also a positive real number different than unity and is called the base and ' \[x\]' is called an exponent. We can write the relation \[{{a}^{x}}\,\,=\,\,N\]in logarithmic form as \[{{\log }_{a}}N\,=\,x\]. Hence \[{{a}^{x}}\,\,=\,\,N\,\,\Leftrightarrow \,\,{{\log }_{a}}N\,=\,x\].

Hence, the logarithm of a number to some base is the exponent by which the base must be raised in order to get that number.

Limitations of logarithm: \[{{\log }_{a}}N\,=\,x\] is defined only when (i)\[N\,>\,0\], (ii) \[a\,>\,0\] (iii) \[a\,\ne \,1\]

We can evaluate \[\log \,0.01\] step by step by transforming it in such a form so that we can apply the known formulae or properties of logarithm.

\[\log \,0.01\] can be written as \[\log \left( \dfrac{1}{100} \right)\].

As \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\].

\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,\log 1\,-\,\log 100\,=\,0\,-\,\log {{10}^{2}}\] ……………………………………………………… (i)

also as \[\log 1\,=\,0\] and \[\log {{a}^{n}}\,=\,n\times \log a\](power rule of logarithm) equation (i) reduces to

\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,0\,\,-\,\,2\times \log (10)\,\,=\,\,0\,\,-\,\,2\times 1\]

\[\therefore \,\,\,\,\log 0.01\,\,=\,\,-2\].

**Note:**

> \[\log a\] has the base of the logarithm as 10 whereas \[\log a\] has the base of the logarithm as \[e\], where \[e\] is Napier’s constant. Napier’s constant is an irrational number. The approximate value of Napier’s constant is \[e\,\,=\,\,2.718\].

> For a given value of \[N\], \[{{\log }_{a}}N\] will give us a unique value.

> Logarithm of zero does not exist.

\[{{\log }_{N}}N\,=\,\,1\]

> Logarithms of negative real numbers are not defined in the system of real numbers.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE