
How do you differentiate ${x^{\ln x}}$?
Answer
535.2k+ views
Hint: First express the given function in the form of $y = f\left( x \right)$. Then take logarithm on both sides of the equation to simplify it so as to make differentiation easier. Then differentiate both sides with respect to $x$ and make the substitution wherever required. Apply the chain rule of differentiation which is $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}$ to differentiate the composite functions.
Complete step by step answer:
According to the question, we have to show how to differentiate the function ${x^{\ln x}}$.
Let this function be denoted as $y$. Then we have:
$ \Rightarrow y = {x^{\ln x}}{\text{ }}.....{\text{(1)}}$
If we take natural logarithm on both sides, we’ll get:
\[ \Rightarrow \ln y = \ln {x^{\ln x}}\]
We know the logarithmic formula $\ln {a^b} = b\ln a$. On applying this formula, we have:
\[ \Rightarrow \ln y = \ln x\ln x\]
This can be written as:
\[ \Rightarrow \ln y = {\left( {\ln x} \right)^2}\]
Now if we put $\ln x = t$, we’ll get:
\[ \Rightarrow \ln y = {t^2}\]
Differentiating this equation both sides with respect to $x$, we’ll get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\ln y} \right) = \dfrac{d}{{dx}}\left( {{t^2}} \right)\]
We know the chain rule of differentiation as shown below:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}$
Applying this rule for our function, we’ll get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\ln y} \right) = \dfrac{d}{{dt}}\left( {{t^2}} \right)\dfrac{{dt}}{{dx}}\]
We know the formulas of differentiation $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^2} = 2x$. Applying them, we’ll get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2t\dfrac{{dt}}{{dx}}\]
Putting back the value of $t$, we’ll get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2\ln x\dfrac{d}{{dx}}\left( {\ln x} \right)\]
Again applying the formula of differentiation, we’ll get:
\[
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2\ln x \times \dfrac{1}{x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2y\ln x}}{x} \\
\]
Putting back the value of $y$ from equation (1), we’ll get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right) = \dfrac{{2{x^{\ln x}}\ln x}}{x}\]
This is the required differentiation.
Note: Whenever we have to differentiate a composite function, we always use chain rule of differentiation after substitution. This makes a complex looking function simple from where we can differentiate step by step. For example, consider the given composite function:
$ \Rightarrow y = f\left( {g\left( x \right)} \right)$
To differentiate this function, we’ll substitute $g\left( x \right) = t$, we will have:
$ \Rightarrow y = f\left( t \right)$
Now we can apply chain rule of differentiation as shown below:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}f\left( t \right) \times \dfrac{{dt}}{{dx}}$
Now this differentiation is simple and we can do it step by step. After doing this, we can put back the value of $t$ to get the answer.
Complete step by step answer:
According to the question, we have to show how to differentiate the function ${x^{\ln x}}$.
Let this function be denoted as $y$. Then we have:
$ \Rightarrow y = {x^{\ln x}}{\text{ }}.....{\text{(1)}}$
If we take natural logarithm on both sides, we’ll get:
\[ \Rightarrow \ln y = \ln {x^{\ln x}}\]
We know the logarithmic formula $\ln {a^b} = b\ln a$. On applying this formula, we have:
\[ \Rightarrow \ln y = \ln x\ln x\]
This can be written as:
\[ \Rightarrow \ln y = {\left( {\ln x} \right)^2}\]
Now if we put $\ln x = t$, we’ll get:
\[ \Rightarrow \ln y = {t^2}\]
Differentiating this equation both sides with respect to $x$, we’ll get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\ln y} \right) = \dfrac{d}{{dx}}\left( {{t^2}} \right)\]
We know the chain rule of differentiation as shown below:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}$
Applying this rule for our function, we’ll get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\ln y} \right) = \dfrac{d}{{dt}}\left( {{t^2}} \right)\dfrac{{dt}}{{dx}}\]
We know the formulas of differentiation $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^2} = 2x$. Applying them, we’ll get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2t\dfrac{{dt}}{{dx}}\]
Putting back the value of $t$, we’ll get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2\ln x\dfrac{d}{{dx}}\left( {\ln x} \right)\]
Again applying the formula of differentiation, we’ll get:
\[
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2\ln x \times \dfrac{1}{x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2y\ln x}}{x} \\
\]
Putting back the value of $y$ from equation (1), we’ll get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right) = \dfrac{{2{x^{\ln x}}\ln x}}{x}\]
This is the required differentiation.
Note: Whenever we have to differentiate a composite function, we always use chain rule of differentiation after substitution. This makes a complex looking function simple from where we can differentiate step by step. For example, consider the given composite function:
$ \Rightarrow y = f\left( {g\left( x \right)} \right)$
To differentiate this function, we’ll substitute $g\left( x \right) = t$, we will have:
$ \Rightarrow y = f\left( t \right)$
Now we can apply chain rule of differentiation as shown below:
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}f\left( t \right) \times \dfrac{{dt}}{{dx}}$
Now this differentiation is simple and we can do it step by step. After doing this, we can put back the value of $t$ to get the answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

