
How do you differentiate \[{e^{ - 10x}}\] ?
Answer
444.3k+ views
Hint: In this question, we are given an exponential function and we have to find its derivative, the function involves e raised to the power -10x, so we have to differentiate \[{e^{ - 10x}}\] with respect to x. We will first differentiate the whole quantity \[{e^{ - 10x}}\] and then differentiate the quantity that is written in the power $( - 10x)$ as it is also a function of x. The result of multiplying these two differentiated functions will give the value of $\dfrac{{dy}}{{dx}}$ or $y'(x)$ . On solving the given question using the above information, we will get the correct answer.
Complete step-by-step solution:
We have to differentiate \[{e^{ - 10x}}\]
Let $y = {e^{ - 10x}}$
We know that $\dfrac{{d{e^x}}}{{dx}} = {e^x}$
So differentiating both sides of the above equation with respect to x, we get –
$\dfrac{{dy}}{{dx}} = {e^{ - 10x}}\dfrac{{d( - 10x)}}{{dx}}$
We also know that $\dfrac{{dkx}}{{dx}} = kx$ , so we get –
$\dfrac{{dy}}{{dx}} = - 10{e^{ - 10x}}$
Hence, the derivative of \[{e^{ - 10x}}\] is $ - 10{e^{ - 10x}}$ .
Note: Differentiation is represented as $\dfrac{{dy}}{{dx}}$ and is used when we have to find the instantaneous rate of change of a quantity. In the expression $\dfrac{{dy}}{{dx}}$ , $dy$ represents a very small change in quantity and $dx$ represents the small change in the quantity with respect to which the given quantity is changing.
In this question, we have to differentiate \[{e^{ - 10x}}\] , it is a function containing only one variable quantity, so we can simply start differentiating it. But we must rearrange the equation if the equation contains more than one variable quantity so that the variable with respect to which the function is differentiated is present on one side and the variable whose derivative we have to find is present on the other side.
Complete step-by-step solution:
We have to differentiate \[{e^{ - 10x}}\]
Let $y = {e^{ - 10x}}$
We know that $\dfrac{{d{e^x}}}{{dx}} = {e^x}$
So differentiating both sides of the above equation with respect to x, we get –
$\dfrac{{dy}}{{dx}} = {e^{ - 10x}}\dfrac{{d( - 10x)}}{{dx}}$
We also know that $\dfrac{{dkx}}{{dx}} = kx$ , so we get –
$\dfrac{{dy}}{{dx}} = - 10{e^{ - 10x}}$
Hence, the derivative of \[{e^{ - 10x}}\] is $ - 10{e^{ - 10x}}$ .
Note: Differentiation is represented as $\dfrac{{dy}}{{dx}}$ and is used when we have to find the instantaneous rate of change of a quantity. In the expression $\dfrac{{dy}}{{dx}}$ , $dy$ represents a very small change in quantity and $dx$ represents the small change in the quantity with respect to which the given quantity is changing.
In this question, we have to differentiate \[{e^{ - 10x}}\] , it is a function containing only one variable quantity, so we can simply start differentiating it. But we must rearrange the equation if the equation contains more than one variable quantity so that the variable with respect to which the function is differentiated is present on one side and the variable whose derivative we have to find is present on the other side.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
