Answer
Verified
402k+ views
Hint: In this question, we will differentiate the given expression by using the division rule of differentiation. Use the formula of derivatives and then simplify the answer by using trigonometric ratios to get the final answer.
Complete step by step answer:
Here we have to differentiate \[\dfrac{x}{{\cos x}}\].
Now differentiating \[\dfrac{x}{{\cos x}}\] w.r.t \[x\], we have
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?\]
We know that if \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
So, we have \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
By using the above formula, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\
\]
We know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. By substituting this value, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\
\]
Splitting the terms on right-hand side, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}\]
Cancelling the common terms, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}\]
We know that \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]. Substituting this value, we have
\[\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x\]
Thus, the derivative of \[\dfrac{x}{{\cos x}}\] is \[\sec x + x\tan x\sec x\].
Note: In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Complete step by step answer:
Here we have to differentiate \[\dfrac{x}{{\cos x}}\].
Now differentiating \[\dfrac{x}{{\cos x}}\] w.r.t \[x\], we have
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?\]
We know that if \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
So, we have \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
By using the above formula, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\
\]
We know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. By substituting this value, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\
\]
Splitting the terms on right-hand side, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}\]
Cancelling the common terms, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}\]
We know that \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]. Substituting this value, we have
\[\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x\]
Thus, the derivative of \[\dfrac{x}{{\cos x}}\] is \[\sec x + x\tan x\sec x\].
Note: In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE