Answer

Verified

402k+ views

**Hint:**In this question, we will differentiate the given expression by using the division rule of differentiation. Use the formula of derivatives and then simplify the answer by using trigonometric ratios to get the final answer.

**Complete step by step answer:**

Here we have to differentiate \[\dfrac{x}{{\cos x}}\].

Now differentiating \[\dfrac{x}{{\cos x}}\] w.r.t \[x\], we have

\[\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?\]

We know that if \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].

So, we have \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].

By using the above formula, we get

\[

\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\

\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\

\]

We know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. By substituting this value, we have

\[

\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\

\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\

\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\

\]

Splitting the terms on right-hand side, we have

\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}\]

Cancelling the common terms, we get

\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}\]

We know that \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]. Substituting this value, we have

\[\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x\]

**Thus, the derivative of \[\dfrac{x}{{\cos x}}\] is \[\sec x + x\tan x\sec x\].**

**Note:**In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

A group of fish is known as class 7 english CBSE

The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE

Write all prime numbers between 80 and 100 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Onam is the main festival of which state A Karnataka class 7 social science CBSE

Who administers the oath of office to the President class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE