How do you differentiate \[\dfrac{x}{{\cos x}}\]?
Answer
Verified
438k+ views
Hint: In this question, we will differentiate the given expression by using the division rule of differentiation. Use the formula of derivatives and then simplify the answer by using trigonometric ratios to get the final answer.
Complete step by step answer:
Here we have to differentiate \[\dfrac{x}{{\cos x}}\].
Now differentiating \[\dfrac{x}{{\cos x}}\] w.r.t \[x\], we have
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?\]
We know that if \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
So, we have \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
By using the above formula, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\
\]
We know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. By substituting this value, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\
\]
Splitting the terms on right-hand side, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}\]
Cancelling the common terms, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}\]
We know that \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]. Substituting this value, we have
\[\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x\]
Thus, the derivative of \[\dfrac{x}{{\cos x}}\] is \[\sec x + x\tan x\sec x\].
Note: In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Complete step by step answer:
Here we have to differentiate \[\dfrac{x}{{\cos x}}\].
Now differentiating \[\dfrac{x}{{\cos x}}\] w.r.t \[x\], we have
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?\]
We know that if \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
So, we have \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
By using the above formula, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\
\]
We know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. By substituting this value, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\
\]
Splitting the terms on right-hand side, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}\]
Cancelling the common terms, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}\]
We know that \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]. Substituting this value, we have
\[\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x\]
Thus, the derivative of \[\dfrac{x}{{\cos x}}\] is \[\sec x + x\tan x\sec x\].
Note: In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE