
How is the Henderson-Hasselbalch equation used to calculate the ratio of ${H_2}C{O_3}$ to $HCO_3^ - $ in blood having a pH of 7.40?
Answer
443.7k+ views
Hint: The Henderson-Hasselbalch equation is a mathematical equation which gives relation between the pH of the solution and the $p{K_a}$ which is equal to the $ - \log {K_a}$. The ${K_a}$ is the acid dissociation constant of the weak base. We need to determine the ratio of weak acid ${H_2}C{O_3}$to its conjugate base $HCO_3^ - $.
Complete step by step answer:
The equation which relates the pH of an aqueous solution of an acid to the acid dissociation constant of the acid is described as the Henderson-Hasselbalch equation.
The equation is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[Conjugate\;base]}}{{[weak\;acid]}}} \right)$
In this question it is given that the weak acid is ${H_2}C{O_3}$and its conjugate base is $HCO_3^ - $.
Substitute it in the given equation.
$ \Rightarrow pH = p{K_a} + \log \left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$K{a_1}({H_2}C{O_3}) = 4.5\times{10^{ - 7}}$
The $p{K_a}$ value is equal to the negative logarithm of acid dissociation constant of the weak acid.
It is given as shown below.
$p{K_a} = - \log \left[ {{K_a}} \right]$
Where,
${K_a}$ is the acid dissociation constant of the weak acid.
Substitute the value in the given equation.
$ \Rightarrow p{K_a} = - \log \left[ {4.5\times{{10}^{ - 7}}} \right]$
$ \Rightarrow p{K_a} = 6.4$
It is given that the pH is 7.40
Now we need to determine the ratio which exists between the concentration of the conjugate base, $HCO_3^ - $ and the concentration of the weak acid ${H_2}C{O_3}$.
Substitute the value in the equation.
$ \Rightarrow 7.40 = 6.4 + {\log _{10}}\left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 7.4 - 6.4$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 1.0$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = {10^{1.0}}$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 10$
$ \Rightarrow ([HCO_3^ - ]:[{H_2}C{O_3}]) = 10:1$
Therefore, the ratio of ${H_2}C{O_3}$ to $HCO_3^ - $ in blood having a pH of 7.40 is 10:1.
Note: The $p{K_a}$ value measures the strength of the acid is solution. The weak acid has $p{K_a}$ value ranging from 2-12 in water. The Henderson-Hasselbalch equation is also used to determine the pH of the buffer solution and the equilibrium pH in an acid-base reaction.
Complete step by step answer:
The equation which relates the pH of an aqueous solution of an acid to the acid dissociation constant of the acid is described as the Henderson-Hasselbalch equation.
The equation is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[Conjugate\;base]}}{{[weak\;acid]}}} \right)$
In this question it is given that the weak acid is ${H_2}C{O_3}$and its conjugate base is $HCO_3^ - $.
Substitute it in the given equation.
$ \Rightarrow pH = p{K_a} + \log \left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$K{a_1}({H_2}C{O_3}) = 4.5\times{10^{ - 7}}$
The $p{K_a}$ value is equal to the negative logarithm of acid dissociation constant of the weak acid.
It is given as shown below.
$p{K_a} = - \log \left[ {{K_a}} \right]$
Where,
${K_a}$ is the acid dissociation constant of the weak acid.
Substitute the value in the given equation.
$ \Rightarrow p{K_a} = - \log \left[ {4.5\times{{10}^{ - 7}}} \right]$
$ \Rightarrow p{K_a} = 6.4$
It is given that the pH is 7.40
Now we need to determine the ratio which exists between the concentration of the conjugate base, $HCO_3^ - $ and the concentration of the weak acid ${H_2}C{O_3}$.
Substitute the value in the equation.
$ \Rightarrow 7.40 = 6.4 + {\log _{10}}\left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 7.4 - 6.4$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 1.0$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = {10^{1.0}}$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 10$
$ \Rightarrow ([HCO_3^ - ]:[{H_2}C{O_3}]) = 10:1$
Therefore, the ratio of ${H_2}C{O_3}$ to $HCO_3^ - $ in blood having a pH of 7.40 is 10:1.
Note: The $p{K_a}$ value measures the strength of the acid is solution. The weak acid has $p{K_a}$ value ranging from 2-12 in water. The Henderson-Hasselbalch equation is also used to determine the pH of the buffer solution and the equilibrium pH in an acid-base reaction.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
