
HBr reacts fastest with:
A) 2-methyl propane-2-ol
B) Propane-1-ol
C) Propane-2-ol
D) Propane-1-ol
Answer
579.6k+ views
Hint: Tertiary alcohols react fastest with hydrogen halides and tertiary alcohol is a compound in which a hydroxy group, ‒OH, is attached to a saturated carbon atom which has three other carbon atoms attached to it.
Complete step by step solution:
In this question, we have been asked that among the four options which compound would react fastest with HBr. As we know, HBr is a hydrogen halide, and as we can see that all the options contain alcohol. All the reactions will be carried out through a nucleophilic substitution reaction pathway. In the case of $\mathop {SN}\nolimits_1 $ reaction, first, the leaving group separates from the compound to form an intermediate carbocation and then the nucleophile attacks the carbon center of the carbocation. Thus, the tertiary alcohol will produce the most stable carbocation as tertiary carbocation is always marked as the most stable. This reaction usually proceeds via $\mathop {SN}\nolimits_1 $ mechanism which involves a carbocation intermediate that can undergo a rearrangement. Methanol and primary alcohols will proceed via $\mathop {SN}\nolimits_2 $ mechanism since these two will have highly unfavorable carbocation.
For the $\mathop {SN}\nolimits_2 $, since steric hindrance increases as we go from primary to secondary to tertiary, the rate of reaction proceeds from primary (fastest) > secondary >> tertiary (slowest). In the case of a $\mathop {SN}\nolimits_2 $ mechanism, the attack of the nucleophile and the removal of the leaving group from the compound takes place simultaneously. Thus, the lower the steric hindrance, the higher the rate of reaction will be.
For the $\mathop {SN}\nolimits_1 $, since carbocation stability increases as we go from primary to secondary to tertiary, the rate of reaction for the SN1 goes from primary (slowest) << secondary < tertiary (fastest). So, the alcohol reactivity order will be: $\mathop 3\nolimits^o > \mathop 2\nolimits^o > \mathop 1\nolimits^o $ methyl. So, the tertiary alcohol reacts faster with hydrogen halide. 2-methyl propane-2-ol is tertiary alcohol and thus, reacts fastest with HBr. Propane-1-ol is alkyl alcohol which reacts to the slowest with HBr. Propane-2-ol is secondary alcohol and Propane-1-ol is a primary alcohol.
$\therefore$ Hence, Option (A) is correct.
Note:
In these types of problems, one has to remember that the rate of reaction would be the fastest in which the intermediate carbocation is the most stable. The two nucleophilic substitution reactions are decided by the options provided in the question. By the use of the proper mechanisms, only one can get the desired major product.
Complete step by step solution:
In this question, we have been asked that among the four options which compound would react fastest with HBr. As we know, HBr is a hydrogen halide, and as we can see that all the options contain alcohol. All the reactions will be carried out through a nucleophilic substitution reaction pathway. In the case of $\mathop {SN}\nolimits_1 $ reaction, first, the leaving group separates from the compound to form an intermediate carbocation and then the nucleophile attacks the carbon center of the carbocation. Thus, the tertiary alcohol will produce the most stable carbocation as tertiary carbocation is always marked as the most stable. This reaction usually proceeds via $\mathop {SN}\nolimits_1 $ mechanism which involves a carbocation intermediate that can undergo a rearrangement. Methanol and primary alcohols will proceed via $\mathop {SN}\nolimits_2 $ mechanism since these two will have highly unfavorable carbocation.
For the $\mathop {SN}\nolimits_2 $, since steric hindrance increases as we go from primary to secondary to tertiary, the rate of reaction proceeds from primary (fastest) > secondary >> tertiary (slowest). In the case of a $\mathop {SN}\nolimits_2 $ mechanism, the attack of the nucleophile and the removal of the leaving group from the compound takes place simultaneously. Thus, the lower the steric hindrance, the higher the rate of reaction will be.
For the $\mathop {SN}\nolimits_1 $, since carbocation stability increases as we go from primary to secondary to tertiary, the rate of reaction for the SN1 goes from primary (slowest) << secondary < tertiary (fastest). So, the alcohol reactivity order will be: $\mathop 3\nolimits^o > \mathop 2\nolimits^o > \mathop 1\nolimits^o $ methyl. So, the tertiary alcohol reacts faster with hydrogen halide. 2-methyl propane-2-ol is tertiary alcohol and thus, reacts fastest with HBr. Propane-1-ol is alkyl alcohol which reacts to the slowest with HBr. Propane-2-ol is secondary alcohol and Propane-1-ol is a primary alcohol.
$\therefore$ Hence, Option (A) is correct.
Note:
In these types of problems, one has to remember that the rate of reaction would be the fastest in which the intermediate carbocation is the most stable. The two nucleophilic substitution reactions are decided by the options provided in the question. By the use of the proper mechanisms, only one can get the desired major product.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

