
What happens when the volume of a fixed mass of gas is doubled?
Answer
410.7k+ views
Hint :We know that Use the equation of ideal gas law. Use Boyle’s law equation to find the relation between pressure and volume. Apply the given conditions to the ideal gas law equation and find what happens to the n value.
Complete Step By Step Answer:
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
We can use the Ideal Gas Equation to solve this question: $ PV=nRT $
$ P $ is pressure in $ Pa $
$ V $ is volume in $ {{m}^{3}} $
$ n $ is number of moles of gas
$ R $ is the universal gas constant, $ 8.31\text{ }J/K\text{ }mol $
$ T $ is temperature in Kelvin
In your scenario, when mass is fixed, the number of moles will be fixed, too. So we can combine both constant terms n and R to give us: $ PV=kT $ where k is a constant.
Now, since we want to work out how volume changes, let's put V on the left-hand side and move P to the right-hand side: $ V=\dfrac{kT}{P} $
So from the equation, we can deduce that when temperature and pressure are both doubled, the Volume $ V~ $ will remain unchanged as the numerator term $ T $ and the denominator term $ P $ are both affected by a multiple of $ 2, $ hence can be cancelled away: $ V=\dfrac{kT\left( \times 2 \right)}{P\left( \times 2 \right)}=\dfrac{kT}{P} $
Therefore, when the volume of a fixed mass of gas is doubled the pressure is inversely proportional to volume. Thus, when volume is doubled, the pressure is halved.
Note :
Remember that the given question can also be solved by considering Charles' law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Complete Step By Step Answer:
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
We can use the Ideal Gas Equation to solve this question: $ PV=nRT $
$ P $ is pressure in $ Pa $
$ V $ is volume in $ {{m}^{3}} $
$ n $ is number of moles of gas
$ R $ is the universal gas constant, $ 8.31\text{ }J/K\text{ }mol $
$ T $ is temperature in Kelvin
In your scenario, when mass is fixed, the number of moles will be fixed, too. So we can combine both constant terms n and R to give us: $ PV=kT $ where k is a constant.
Now, since we want to work out how volume changes, let's put V on the left-hand side and move P to the right-hand side: $ V=\dfrac{kT}{P} $
So from the equation, we can deduce that when temperature and pressure are both doubled, the Volume $ V~ $ will remain unchanged as the numerator term $ T $ and the denominator term $ P $ are both affected by a multiple of $ 2, $ hence can be cancelled away: $ V=\dfrac{kT\left( \times 2 \right)}{P\left( \times 2 \right)}=\dfrac{kT}{P} $
Therefore, when the volume of a fixed mass of gas is doubled the pressure is inversely proportional to volume. Thus, when volume is doubled, the pressure is halved.
Note :
Remember that the given question can also be solved by considering Charles' law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
