
How do you graph \[y = - 3x + 5\] using slope intercept form?
Answer
538.5k+ views
Hint: In this question, we draw a graph using the above equation. The equation which is given above is a straight line equation. In the above equation is an independent variable and y is a dependent variable. For drawing the graph, first we calculate the points and points are calculated as we put the value of x like \[\left( {0,\;1,\;2,.......} \right)\] in the above equation and then find the value of y. then we draw the graph by using these points.
Complete step by step answer:
Now we come to question, in the question the straight-line equation is given as below.
\[ \Rightarrow y = - 3x + 5\]
The slope is \[m = - 3\].
Now we find the points from the above equation.
We put the value of \[x = 0\] in the above equation, and then we find the value of y.
\[
y = - 3 \times 0 + 5 \\
y = 5 \\
\]
The value of y is \[ = 5\]
Then the point is \[\left( {0,\;5} \right)\].
Now, we put the value of \[x = 1\]in the above equation, and then find the value of y.
\[
y = - 3 \times 1 + 5 \\
y = 2 \\
\]
The value of y is \[ = 2\]
Then the point is \[\left( {1,\;2} \right)\].
Then, we put \[x = 2\] in the above equation then \[y = - 1\]. Then the point is \[\left( {2,\; - 1} \right)\].
Hence, we calculate the same for other points.
Now we draw the graph by using the points.
The points are \[\left( {\left( {0,\;5} \right),\left( {1,\;2} \right),\left( {2,\; - 1} \right)} \right)\].
Therefore, the graph is drawn as below.
Note:
In this question, we use the word slope intercept form. Slope intercept form is defined as the form of straight-line equation. Slope intercept form is represented as below.
\[ \Rightarrow y = mx + c\]
Where,
\[m = \] Slope
\[c = \] It is y intercept
And x and y are the variable. Where x is an independent variable and y is a dependent variable. When we put the value of x then we find the value of y.
draw the graph.
Complete step by step answer:
Now we come to question, in the question the straight-line equation is given as below.
\[ \Rightarrow y = - 3x + 5\]
The slope is \[m = - 3\].
Now we find the points from the above equation.
We put the value of \[x = 0\] in the above equation, and then we find the value of y.
\[
y = - 3 \times 0 + 5 \\
y = 5 \\
\]
The value of y is \[ = 5\]
Then the point is \[\left( {0,\;5} \right)\].
Now, we put the value of \[x = 1\]in the above equation, and then find the value of y.
\[
y = - 3 \times 1 + 5 \\
y = 2 \\
\]
The value of y is \[ = 2\]
Then the point is \[\left( {1,\;2} \right)\].
Then, we put \[x = 2\] in the above equation then \[y = - 1\]. Then the point is \[\left( {2,\; - 1} \right)\].
Hence, we calculate the same for other points.
Now we draw the graph by using the points.
The points are \[\left( {\left( {0,\;5} \right),\left( {1,\;2} \right),\left( {2,\; - 1} \right)} \right)\].
Therefore, the graph is drawn as below.
Note:
In this question, we use the word slope intercept form. Slope intercept form is defined as the form of straight-line equation. Slope intercept form is represented as below.
\[ \Rightarrow y = mx + c\]
Where,
\[m = \] Slope
\[c = \] It is y intercept
And x and y are the variable. Where x is an independent variable and y is a dependent variable. When we put the value of x then we find the value of y.
draw the graph.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

