Answer
Verified
407.1k+ views
Hint: We know that the ideal gas law states certain assumptions about gases and theory which are unnecessarily false. Therefore this results that ideal gas law has some sort of limitation within it. For example; ideal gas law creates an assumption that the gas particles have neither volume nor are attracted to one another.
Complete step-by-step answer:
Firstly we have to put mass of \[C{{O}_{2}}\] under the given conditions $1.01g$
After that we have to determine \[mol\text{ }C{{O}_{2}}\] by using Ideal gas laws and multiplying \[mol\text{ }C{{O}_{2}}\]by its molar mass $44.0098\dfrac{g}{mol}$ . Whereas the ideal gas law equation is given by: $PV=nRT$.
Here we have $P$ is pressure, $V$ is volume, $n$ is moles, $R$ is the gas constant and $T$ is temperature in Kelvins and the gas constant includes volume of unit in liters and the volume milliliters would be converted into liters.
Given :
\[\Rightarrow P\text{ }=\text{ }750.3\text{ }Torr\]
\[\Rightarrow V\text{ }=\text{ }520mL\text{ }\times \text{ }\dfrac{1L}{1000mL}~~=\text{ }0.520\text{ }L\]
\[\Rightarrow R\text{ }=~~62.364\text{ }L\text{ }\dfrac{Torr}{Kmol}~\]
\[\Rightarrow T~=~0{}^\circ C~+~273.15~=~273\text{ }K\]
Now that we know the formula or as we say ideal gas equation; $PV=nRT$
Thus from here we can determine the formula for $n$ we get formula for $n=\dfrac{R\cdot T}{P\cdot V}$ and now by substituting the values we get:
$\Rightarrow n=\dfrac{750.3Torr\times 0.520L}{62.364L\dfrac{Torr}{Kmol}\times 273K}=0.02298mol\cdot C{{O}_{2}}$
Where mass of \[C{{O}_{2}}\] can be given by, multiplying the value of $n$ with $\dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$ we get;
$\Rightarrow 0.02298mol\cdot C{{O}_{2}}\times \dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$
$\Rightarrow 1.01g\cdot C{{O}_{2}}$
Therefore, $1.01$ grams of \[C{{O}_{2}}\] are in \[520mL\] of carbon dioxide gas at $0$ degrees Celsius and a pressure of \[750.3\] torr.
Note: Note that since this particle of ideal gases have neither volume therefore gas should be able to get condensed to the volume of zero. Whereas real gaseous particle that occupy space. A gaseous state will be more and more condensed in order to form liquidity and has volume. The gaseous law have no longer application which is because of substance is no longer in a gaseous state.
Complete step-by-step answer:
Firstly we have to put mass of \[C{{O}_{2}}\] under the given conditions $1.01g$
After that we have to determine \[mol\text{ }C{{O}_{2}}\] by using Ideal gas laws and multiplying \[mol\text{ }C{{O}_{2}}\]by its molar mass $44.0098\dfrac{g}{mol}$ . Whereas the ideal gas law equation is given by: $PV=nRT$.
Here we have $P$ is pressure, $V$ is volume, $n$ is moles, $R$ is the gas constant and $T$ is temperature in Kelvins and the gas constant includes volume of unit in liters and the volume milliliters would be converted into liters.
Given :
\[\Rightarrow P\text{ }=\text{ }750.3\text{ }Torr\]
\[\Rightarrow V\text{ }=\text{ }520mL\text{ }\times \text{ }\dfrac{1L}{1000mL}~~=\text{ }0.520\text{ }L\]
\[\Rightarrow R\text{ }=~~62.364\text{ }L\text{ }\dfrac{Torr}{Kmol}~\]
\[\Rightarrow T~=~0{}^\circ C~+~273.15~=~273\text{ }K\]
Now that we know the formula or as we say ideal gas equation; $PV=nRT$
Thus from here we can determine the formula for $n$ we get formula for $n=\dfrac{R\cdot T}{P\cdot V}$ and now by substituting the values we get:
$\Rightarrow n=\dfrac{750.3Torr\times 0.520L}{62.364L\dfrac{Torr}{Kmol}\times 273K}=0.02298mol\cdot C{{O}_{2}}$
Where mass of \[C{{O}_{2}}\] can be given by, multiplying the value of $n$ with $\dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$ we get;
$\Rightarrow 0.02298mol\cdot C{{O}_{2}}\times \dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$
$\Rightarrow 1.01g\cdot C{{O}_{2}}$
Therefore, $1.01$ grams of \[C{{O}_{2}}\] are in \[520mL\] of carbon dioxide gas at $0$ degrees Celsius and a pressure of \[750.3\] torr.
Note: Note that since this particle of ideal gases have neither volume therefore gas should be able to get condensed to the volume of zero. Whereas real gaseous particle that occupy space. A gaseous state will be more and more condensed in order to form liquidity and has volume. The gaseous law have no longer application which is because of substance is no longer in a gaseous state.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of friction in our daily life
When people say No pun intended what does that mea class 8 english CBSE