Answer
Verified
425.4k+ views
Hint: Write the dissociation reaction for ammonium chloride. Calculate the \[{\text{p}}{{\text{K}}_{\text{b}}}\] from given \[{{\text{K}}_{\text{b}}}\] and then calculate \[{\text{p}}{{\text{K}}_a}\] from it. Use the Henderson Hassel balch to calculate the concentration of ammonium ion. Using the concentration of ammonium ion and volume of water calculate the moles of ammonium chloride. Finally, calculate the mass of ammonium chloride using moles and molar mass of it.
Formulas Used :
Henderson Hasselbalch equation
\[{\text{pH = p}}{{\text{K}}_{\text{a}}}{\text{ + log}}\dfrac{{{\text{[Base]}}}}{{{\text{[Acid]}}}}\]
\[{\text{pH = }} - \log [{H^ + }]\]
\[{\text{p}}{{\text{K}}_a} + {\text{p}}{{\text{K}}_{\text{b}}} = 14\]
\[{\text{moles = molarity }} \times {\text{ vol L}}\]
Complete step-by-step answer:
The dissociation reaction for ammonium chloride is as follows:
\[{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl(aq)}} \to {\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq) + }}{{\text{H}}^{\text{ + }}}{\text{(aq)}}\]
In this reaction \[{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}}\] is acidic species and ammonia is basic species.
We have given \[{\text{pH}}\] a solution. Using \[{\text{pH}}\] we can calculate the concentration of hydrogen ion as follows:
\[{\text{pH = }} - \log [{H^ + }]\]
Now, substitute 4.5 for \[{\text{pH}}\] and calculate the concentration of \[{H^ + }\] ions.
\[4.5 = - \log [{H^ + }]\]
\[[{H^ + }] = {\text{ antilog ( - 4}}{\text{.5) = 3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}\]
From the reaction, we can say that at equilibrium\[[{H^ + }] = [{\text{N}}{{\text{H}}_{\text{3}}}{\text{] = 3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}\].
Now use the Henderson Hasselbalch equation and calculate the concentration of ammonium ions. \[{\text{pH = p}}{{\text{K}}_{\text{a}}}{\text{ + log}}\dfrac{{{\text{[Base]}}}}{{{\text{[Acid]}}}}\]
We can rewrite it as
\[{\text{pH = p}}{{\text{K}}_{\text{a}}}{\text{ + log}}\dfrac{{{\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}}\]
Here we need to calculate \[{\text{p}}{{\text{K}}_a}\] from the given \[{{\text{K}}_{\text{b}}}\] value of ammonium hydroxide.
\[{\text{p}}{{\text{K}}_{\text{b}}} = - \log ({{\text{K}}_{\text{b}}}) = - \log (1.8 \times {10^{ - 5}}) = 4.74\]
Using the relation between \[{\text{p}}{{\text{K}}_{\text{b}}}\] and \[{\text{p}}{{\text{K}}_a}\] we can calculate the value of \[{\text{p}}{{\text{K}}_a}\] as follows :
\[{\text{p}}{{\text{K}}_a} + {\text{p}}{{\text{K}}_{\text{b}}} = 14\]
So, \[{\text{p}}{{\text{K}}_a} = 14 - {\text{p}}{{\text{K}}_{\text{b}}} = 14 - 4.74 = 9.26\]
Now, substitute 4.5 for\[{\text{pH}}\], 9.26 for \[{\text{p}}{{\text{K}}_a}\] , \[{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}\] for \[[{\text{N}}{{\text{H}}_{\text{3}}}{\text{]}}\] and calculate the equilibrium concentration of \[{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}\] using the Henderson Hasselbalch equation.
\[\Rightarrow {\text{4}}{\text{.5 = 9}}{\text{.26 + log}}\dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}}\]
\[\Rightarrow {\text{ - 4}}{\text{.76 = log}}\dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}}\]
\[\Rightarrow \dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}} = {\text{antilog( - 4}}{\text{.76}})\]
\[\Rightarrow \dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}} = 1.74 \times {10^{ - 5}}\]
\[\Rightarrow {\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}} = 1.82{\text{M}}\]
We will consider this as the initial concentration of ammonium chloride as it dissociates very less.
Now we will calculate the moles of ammonium chloride using the volume of water and calculated concentration.
\[\Rightarrow {\text{moles = molarity }} \times {\text{ vol L}}\]
Volume off water = 500 ml =0.5L
\[\Rightarrow {\text{moles N}}{{\text{H}}_{\text{4}}}{\text{Cl = 1}}{\text{.82M}} \times {\text{ 0}}{\text{.5L = 0}}{\text{.91 mole}}\]
Now, we will convert these moles of ammonium chloride to mass using its molar mass as follows:
The molar mass of \[{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}}\]=\[{\text{53}}{\text{.5g/mol}}\]
\[\Rightarrow {\text{mass N}}{{\text{H}}_{\text{4}}}{\text{Cl = 0}}{\text{.91 mole}} \times {\text{53}}{\text{.5g/mol}} = {\text{48 g}}\]
Hence, we can say that 48.15 g ammonium chloride should be dissolved in 500 ml of water to have a solution of \[{\text{pH}}\] 4.5.
Thus, the correct answer is option (B) 48.15.
Note: Acids are proton donor species. The ability of acid to donate the proton determines the strength of the acid. Strong acid dissociates completely in an aqueous solution. Weak acid dissociates partially in an aqueous solution. As weak acid dissociates very less we consider initial concentration and equilibrium concentration of weak acid same.
Formulas Used :
Henderson Hasselbalch equation
\[{\text{pH = p}}{{\text{K}}_{\text{a}}}{\text{ + log}}\dfrac{{{\text{[Base]}}}}{{{\text{[Acid]}}}}\]
\[{\text{pH = }} - \log [{H^ + }]\]
\[{\text{p}}{{\text{K}}_a} + {\text{p}}{{\text{K}}_{\text{b}}} = 14\]
\[{\text{moles = molarity }} \times {\text{ vol L}}\]
Complete step-by-step answer:
The dissociation reaction for ammonium chloride is as follows:
\[{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl(aq)}} \to {\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq) + }}{{\text{H}}^{\text{ + }}}{\text{(aq)}}\]
In this reaction \[{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}}\] is acidic species and ammonia is basic species.
We have given \[{\text{pH}}\] a solution. Using \[{\text{pH}}\] we can calculate the concentration of hydrogen ion as follows:
\[{\text{pH = }} - \log [{H^ + }]\]
Now, substitute 4.5 for \[{\text{pH}}\] and calculate the concentration of \[{H^ + }\] ions.
\[4.5 = - \log [{H^ + }]\]
\[[{H^ + }] = {\text{ antilog ( - 4}}{\text{.5) = 3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}\]
From the reaction, we can say that at equilibrium\[[{H^ + }] = [{\text{N}}{{\text{H}}_{\text{3}}}{\text{] = 3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}\].
Now use the Henderson Hasselbalch equation and calculate the concentration of ammonium ions. \[{\text{pH = p}}{{\text{K}}_{\text{a}}}{\text{ + log}}\dfrac{{{\text{[Base]}}}}{{{\text{[Acid]}}}}\]
We can rewrite it as
\[{\text{pH = p}}{{\text{K}}_{\text{a}}}{\text{ + log}}\dfrac{{{\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}}\]
Here we need to calculate \[{\text{p}}{{\text{K}}_a}\] from the given \[{{\text{K}}_{\text{b}}}\] value of ammonium hydroxide.
\[{\text{p}}{{\text{K}}_{\text{b}}} = - \log ({{\text{K}}_{\text{b}}}) = - \log (1.8 \times {10^{ - 5}}) = 4.74\]
Using the relation between \[{\text{p}}{{\text{K}}_{\text{b}}}\] and \[{\text{p}}{{\text{K}}_a}\] we can calculate the value of \[{\text{p}}{{\text{K}}_a}\] as follows :
\[{\text{p}}{{\text{K}}_a} + {\text{p}}{{\text{K}}_{\text{b}}} = 14\]
So, \[{\text{p}}{{\text{K}}_a} = 14 - {\text{p}}{{\text{K}}_{\text{b}}} = 14 - 4.74 = 9.26\]
Now, substitute 4.5 for\[{\text{pH}}\], 9.26 for \[{\text{p}}{{\text{K}}_a}\] , \[{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}\] for \[[{\text{N}}{{\text{H}}_{\text{3}}}{\text{]}}\] and calculate the equilibrium concentration of \[{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}\] using the Henderson Hasselbalch equation.
\[\Rightarrow {\text{4}}{\text{.5 = 9}}{\text{.26 + log}}\dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}}\]
\[\Rightarrow {\text{ - 4}}{\text{.76 = log}}\dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}}\]
\[\Rightarrow \dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}} = {\text{antilog( - 4}}{\text{.76}})\]
\[\Rightarrow \dfrac{{{\text{3}}{\text{.16}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M}}}}{{{\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}}}} = 1.74 \times {10^{ - 5}}\]
\[\Rightarrow {\text{[N}}{{\text{H}}_{\text{4}}}^ + {\text{]}} = 1.82{\text{M}}\]
We will consider this as the initial concentration of ammonium chloride as it dissociates very less.
Now we will calculate the moles of ammonium chloride using the volume of water and calculated concentration.
\[\Rightarrow {\text{moles = molarity }} \times {\text{ vol L}}\]
Volume off water = 500 ml =0.5L
\[\Rightarrow {\text{moles N}}{{\text{H}}_{\text{4}}}{\text{Cl = 1}}{\text{.82M}} \times {\text{ 0}}{\text{.5L = 0}}{\text{.91 mole}}\]
Now, we will convert these moles of ammonium chloride to mass using its molar mass as follows:
The molar mass of \[{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}}\]=\[{\text{53}}{\text{.5g/mol}}\]
\[\Rightarrow {\text{mass N}}{{\text{H}}_{\text{4}}}{\text{Cl = 0}}{\text{.91 mole}} \times {\text{53}}{\text{.5g/mol}} = {\text{48 g}}\]
Hence, we can say that 48.15 g ammonium chloride should be dissolved in 500 ml of water to have a solution of \[{\text{pH}}\] 4.5.
Thus, the correct answer is option (B) 48.15.
Note: Acids are proton donor species. The ability of acid to donate the proton determines the strength of the acid. Strong acid dissociates completely in an aqueous solution. Weak acid dissociates partially in an aqueous solution. As weak acid dissociates very less we consider initial concentration and equilibrium concentration of weak acid same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE