
What is gram molecular volume prove that gram molecular volume is equal to \[22.4d{m^3}\]?
Answer
512.7k+ views
Hint: We need to know the gram molecular volume which is also called molar volume. For an ideal gas at standard temperature and pressure, the gram molecular volume is fixed or constant and it will not change. And the gram molecular volume of a compound can be calculated by using an ideal gas equation and that is, \[PV = nRT\].
Complete answer:
The gram molecular volume is defined as, it is the volume of one mole of a gas which is occupied at a standard temperature and pressure, STP. And it is always fixed at STP which means, the gram molecular mass of an ideal gas mainly depends on temperature and pressure. The standard pressure is equal to 1atm and standard temperature is \[273K\]. And the molar volume of an ideal gas can be calculated by using the ideal gas equation, \[PV = nRT\].
For 1 mole,
\[PV = nRT\] …….. (1)
Where, P is pressure, V is the volume, n is the number of molecules, R is universal gas constant and T is equal to temperature.
By rearranging the equation one, will get
\[V = \dfrac{{nRT}}{P}\]
Applying the values of n, R, T and P
\[V = \dfrac{{n \times 0.0821 \times 273}}{{1atm}}\]
On simplification we get,
\[V = 22.4L\]
Hence, the gram molecular volume is equal to \[22.4L\].
Note:
We have to remember that the volume of one mole of a gas which is occupied at a standard temperature and pressure, STP is known as gram molecular volume. And it mainly depends on standard temperature and pressure. The standard pressure and temperature is equal to $1atm$ and \[273K\]respectively. The gram molecular volume is calculated by using the ideal gas equation and it is equal to \[22.4L\].
Complete answer:
The gram molecular volume is defined as, it is the volume of one mole of a gas which is occupied at a standard temperature and pressure, STP. And it is always fixed at STP which means, the gram molecular mass of an ideal gas mainly depends on temperature and pressure. The standard pressure is equal to 1atm and standard temperature is \[273K\]. And the molar volume of an ideal gas can be calculated by using the ideal gas equation, \[PV = nRT\].
For 1 mole,
\[PV = nRT\] …….. (1)
Where, P is pressure, V is the volume, n is the number of molecules, R is universal gas constant and T is equal to temperature.
By rearranging the equation one, will get
\[V = \dfrac{{nRT}}{P}\]
Applying the values of n, R, T and P
\[V = \dfrac{{n \times 0.0821 \times 273}}{{1atm}}\]
On simplification we get,
\[V = 22.4L\]
Hence, the gram molecular volume is equal to \[22.4L\].
Note:
We have to remember that the volume of one mole of a gas which is occupied at a standard temperature and pressure, STP is known as gram molecular volume. And it mainly depends on standard temperature and pressure. The standard pressure and temperature is equal to $1atm$ and \[273K\]respectively. The gram molecular volume is calculated by using the ideal gas equation and it is equal to \[22.4L\].
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

