
Given that \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\] where \[A\] and \[B\] are acute angles. Calculate \[A + B\] when \[\tan A = \dfrac{1}{2}\], \[\tan B = \dfrac{1}{3}\].
A. \[A + B = 30^\circ \]
B. \[A + B = 45^\circ \]
C. \[A + B = 60^\circ \]
D. \[A + B = 75^\circ \]
Answer
539.1k+ views
Hint: Here we will first use the given trigonometric formulas and we will substitute the value of tangent of both the angles in the formula. Then we will simplify it using the mathematical operations like addition, subtraction and multiplication. Then we will use the basics of the inverse trigonometric trigonometry here to get the required sum of the two angles.
Formula used:
Inverse trigonometric identity is given by \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Complete step by step solution:
Here we need to find the value of the given sum of two acute angles.
It is given that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\] ………… \[\left( 1 \right)\]
Now, we will substitute \[\tan A = \dfrac{1}{2}\] and \[\tan B = \dfrac{1}{3}\] in the equation \[\left( 1 \right)\]. Therefore, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \cdot \dfrac{1}{3}}}\]
Simplifying the expression, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{{3 + 2}}{6}}}{{1 - \dfrac{1}{6}}}\]
On adding the terms in the numerator and subtracting the terms in the denominator, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}\]
On further simplification, we get
\[ \Rightarrow \tan \left( {A + B} \right) = 1\]
Now, we will take \[{\tan ^{ - 1}}\] on both sides.
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {A + B} \right)} \right) = {\tan ^{ - 1}}\left( 1 \right)\]
We know from the inverse trigonometric identities that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Using this identity, we get
\[ \Rightarrow A + B = {\tan ^{ - 1}}\left( 1 \right)\]
We know that the value of \[{\tan ^{ - 1}}\left( 1 \right)\] is equal to \[45^\circ \].
Now, we will substitute this value in the above equation, so we get
\[ \Rightarrow A + B = 45^\circ \].
Hence, the correct option is option B.
Note:
Trigonometry is a branch of mathematics which helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life. The three most common trigonometric functions are the tangent function, the sine and the cosine function. In simple terms, they are written as ‘sin’, ‘cos’ and ‘tan’. Hence, trigonometry is not just a chapter to study, in fact, it is being used in everyday life.
Formula used:
Inverse trigonometric identity is given by \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Complete step by step solution:
Here we need to find the value of the given sum of two acute angles.
It is given that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\] ………… \[\left( 1 \right)\]
Now, we will substitute \[\tan A = \dfrac{1}{2}\] and \[\tan B = \dfrac{1}{3}\] in the equation \[\left( 1 \right)\]. Therefore, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \cdot \dfrac{1}{3}}}\]
Simplifying the expression, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{{3 + 2}}{6}}}{{1 - \dfrac{1}{6}}}\]
On adding the terms in the numerator and subtracting the terms in the denominator, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}\]
On further simplification, we get
\[ \Rightarrow \tan \left( {A + B} \right) = 1\]
Now, we will take \[{\tan ^{ - 1}}\] on both sides.
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {A + B} \right)} \right) = {\tan ^{ - 1}}\left( 1 \right)\]
We know from the inverse trigonometric identities that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Using this identity, we get
\[ \Rightarrow A + B = {\tan ^{ - 1}}\left( 1 \right)\]
We know that the value of \[{\tan ^{ - 1}}\left( 1 \right)\] is equal to \[45^\circ \].
Now, we will substitute this value in the above equation, so we get
\[ \Rightarrow A + B = 45^\circ \].
Hence, the correct option is option B.
Note:
Trigonometry is a branch of mathematics which helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life. The three most common trigonometric functions are the tangent function, the sine and the cosine function. In simple terms, they are written as ‘sin’, ‘cos’ and ‘tan’. Hence, trigonometry is not just a chapter to study, in fact, it is being used in everyday life.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

