Answer
Verified
424.2k+ views
Hint: Here we will first use the given trigonometric formulas and we will substitute the value of tangent of both the angles in the formula. Then we will simplify it using the mathematical operations like addition, subtraction and multiplication. Then we will use the basics of the inverse trigonometric trigonometry here to get the required sum of the two angles.
Formula used:
Inverse trigonometric identity is given by \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Complete step by step solution:
Here we need to find the value of the given sum of two acute angles.
It is given that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\] ………… \[\left( 1 \right)\]
Now, we will substitute \[\tan A = \dfrac{1}{2}\] and \[\tan B = \dfrac{1}{3}\] in the equation \[\left( 1 \right)\]. Therefore, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \cdot \dfrac{1}{3}}}\]
Simplifying the expression, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{{3 + 2}}{6}}}{{1 - \dfrac{1}{6}}}\]
On adding the terms in the numerator and subtracting the terms in the denominator, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}\]
On further simplification, we get
\[ \Rightarrow \tan \left( {A + B} \right) = 1\]
Now, we will take \[{\tan ^{ - 1}}\] on both sides.
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {A + B} \right)} \right) = {\tan ^{ - 1}}\left( 1 \right)\]
We know from the inverse trigonometric identities that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Using this identity, we get
\[ \Rightarrow A + B = {\tan ^{ - 1}}\left( 1 \right)\]
We know that the value of \[{\tan ^{ - 1}}\left( 1 \right)\] is equal to \[45^\circ \].
Now, we will substitute this value in the above equation, so we get
\[ \Rightarrow A + B = 45^\circ \].
Hence, the correct option is option B.
Note:
Trigonometry is a branch of mathematics which helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life. The three most common trigonometric functions are the tangent function, the sine and the cosine function. In simple terms, they are written as ‘sin’, ‘cos’ and ‘tan’. Hence, trigonometry is not just a chapter to study, in fact, it is being used in everyday life.
Formula used:
Inverse trigonometric identity is given by \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Complete step by step solution:
Here we need to find the value of the given sum of two acute angles.
It is given that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\] ………… \[\left( 1 \right)\]
Now, we will substitute \[\tan A = \dfrac{1}{2}\] and \[\tan B = \dfrac{1}{3}\] in the equation \[\left( 1 \right)\]. Therefore, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \cdot \dfrac{1}{3}}}\]
Simplifying the expression, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{{3 + 2}}{6}}}{{1 - \dfrac{1}{6}}}\]
On adding the terms in the numerator and subtracting the terms in the denominator, we get
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}\]
On further simplification, we get
\[ \Rightarrow \tan \left( {A + B} \right) = 1\]
Now, we will take \[{\tan ^{ - 1}}\] on both sides.
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {A + B} \right)} \right) = {\tan ^{ - 1}}\left( 1 \right)\]
We know from the inverse trigonometric identities that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
Using this identity, we get
\[ \Rightarrow A + B = {\tan ^{ - 1}}\left( 1 \right)\]
We know that the value of \[{\tan ^{ - 1}}\left( 1 \right)\] is equal to \[45^\circ \].
Now, we will substitute this value in the above equation, so we get
\[ \Rightarrow A + B = 45^\circ \].
Hence, the correct option is option B.
Note:
Trigonometry is a branch of mathematics which helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life. The three most common trigonometric functions are the tangent function, the sine and the cosine function. In simple terms, they are written as ‘sin’, ‘cos’ and ‘tan’. Hence, trigonometry is not just a chapter to study, in fact, it is being used in everyday life.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE