Given that \[{e^{iA}}\] , \[{e^{iB}}\] , \[{e^{iC}}\] are in A.P. where \[A\] , \[B\], \[C\] are the angles of the triangle , then the triangle is
A.Isosceles
B.Equilateral
C.Right - angled
D.None of these.
Answer
280.8k+ views
Hint: In this problem, we have to show the type of triangle. First, we need to know the fact that the sum of all the angles of the triangle is \[180^\circ \]. Then, we use the properties of A.P. (Arithmetic progression ) to find the sum of angles of the triangle and also, we can use this trigonometric identity to solve the problem.
\[\sin A + \sin B = 2\sin \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\]
\[\cos A + \cos B = 2\cos \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\]
From the degree table, \[\cos 60^\circ = \dfrac{1}{2}\]. Finally, we can get the required solution.
Complete step-by-step answer:
We are given the term \[{e^{iA}}\] , \[{e^{iB}}\] , \[{e^{iC}}\] are in A.P. where \[A\] , \[B\], \[C\] are the angles of the triangle.
We know that exponential function \[{e^{i\theta }}\] can written as
\[{e^{i\theta }} = \cos \theta + i\sin \theta \].
We can write the following function with respect to the general form,
\[{e^{iA}} = \cos A + i\sin A\] , since \[\theta = A\] ----------(1)
\[{e^{iB}} = \cos B + i\sin B\], since \[\theta = B\] ----------(2)
\[{e^{iC}} = \cos C + i\sin C\], since \[\theta = C\] ----------(3)
Since, \[{e^{iA}}\] , \[{e^{iB}}\] , \[{e^{iC}}\] are Arithmetic Progression.
Hence, we know that the difference of two consecutive terms are equal to the A.P.
So, the difference of two consecutive terms are :
\[{e^{iB}} - {e^{iA}} = {e^{iC}} - {e^{iB}}\].
Expanding the function \[{e^{iB}}\] from RHS to LHS, we get
\[{e^{iB}} + {e^{iB}} = {e^{iA}} + {e^{iC}}\]
On simplifying we have ,
\[2{e^{iB}} = {e^{iA}} + {e^{iC}}\] ----------(4)
By substituting the equation (1), (2) and (3) in equation (4), it can be written as
\[2(\cos B + i\sin B) = (\cos A + \cos C) + i(\sin A + \sin C)\]
\[2\cos B + i(2\sin B) = (\cos A + \cos C) + i(\sin A + \sin C)\]
Comparing the reals and imaginary parts, we have
Real part: \[2\cos B = \cos A + \cos C\] ----------(5)
Imaginary part: \[2\sin B = \sin A + \sin C\] ----------(6)
On comparing this trigonometric identity with above equation,
We know that the formulas are, \[\sin A + \sin B = 2\sin \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\] and \[\cos A + \cos B = 2\cos \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\].
From this formula, we can write the equation (5) and (6) as follows:
Real part: \[2\cos B = \cos A + \cos C = 2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}\] ---------(7)
Imaginary part: \[2\sin B = \sin A + \sin C = 2\sin \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}\] --------(8)
On dividing the equation (8) by equation (7), then
\[\tan B = \dfrac{{2\sin B}}{{2\cos B}} = \dfrac{{2\sin \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}}}{{2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}}}\]
On further simplifying, we can get
\[\tan B = \dfrac{{\sin \dfrac{{(A + C)}}{2}}}{{\cos \dfrac{{(A + C)}}{2}}}\]
Now, on comparing the trigonometric identity, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ with above equation, then
\[\tan B = \tan \dfrac{{(A + C)}}{2}\]
Here, On comparing the angels we have
\[B = \dfrac{{(A + C)}}{2}\] ----------(9)
\[2B = A + C\]
Adding \[B\] on both sides, we have
\[2B + B = A + B + C\]
We know that the sum of angle of a triangle is \[180^\circ \].
\[3B = {180^ \circ }\], since \[A + B + C = {180^ \circ }\]
\[B = \dfrac{{{{180}^ \circ }}}{3}\]
Hence, \[B = 60^\circ \].
From the trigonometric degree table, $\cos {60^ \circ } = \dfrac{1}{2}$
Substitute the value \[B = 60^\circ \] in equation (5)
\[2\cos B = \cos A + \cos C \Rightarrow \cos A + \cos C = 2\cos {60^ \circ }\]
\[ \Rightarrow \cos A + \cos C = 2 \times \dfrac{1}{2}\] . Since, \[B = 60^\circ \]
\[ \Rightarrow \cos A + \cos C = 1\]
We use this formula, \[\cos A + \cos C = 2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}\].
\[ \Rightarrow 2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2} = 1\]
\[ \Rightarrow 2\cos B\cos \dfrac{{(A - C)}}{2} = 1\].
Since, \[B = 60^\circ \Rightarrow \cos {60^ \circ } = \dfrac{1}{2}\]
\[ \Rightarrow 2 \times \dfrac{1}{2} \times \cos \dfrac{{(A - C)}}{2} = 1\]
\[ \Rightarrow \cos \dfrac{{(A - C)}}{2} = 1\]
By expanding the cosine of LHS to RHS, so it will be written as cosine inverse, then
\[ \Rightarrow \dfrac{{(A - C)}}{2} = {\cos ^{ - 1}}(1)\]
We know that ${\cos ^{ - 1}}(1) = {0^ \circ }$
\[ \Rightarrow \dfrac{{(A - C)}}{2} = 0^\circ \]
Now, we get
$A - C = 0$
Therefore, \[A = C\].
We have \[B = 60^\circ \] and \[A = C\],
Since, the sum of the three sides are equal to ${180^ \circ }$
So, $A + B + C = {180^ \circ } \Rightarrow {60^ \circ } + {60^ \circ } + {60^ \circ } = {180^ \circ }$
We can show a diagrammatic representation of the triangle as follows.
Therefore, \[A = 60^\circ \], \[B = 60^\circ \] and \[C = 60^\circ \]. So, it is an equilateral triangle.
Hence, Given that \[{e^{iA}}\] , \[{e^{iB}}\] , \[{e^{iC}}\] are in A.P. where \[A\] , \[B\], \[C\] are the angles of the triangle , then the triangle is equilateral triangle.
As a result, The option B is the correct one.
So, the correct answer is “Option B”.
Note: The terms of A.P. differ by common difference (d) and Sum of angles of the triangle is \[180^\circ \]. This is the problem of arithmetic progression.
Arithmetic progression is the branch of mathematics which deals with sequence of numbers (i.e. Terms ) whose each term differ by a common difference (denoted by d ).
For example: \[a\] , \[a + d\], \[a + 2d\], \[a + 3d\] and so on . Here each term differs by common difference.
\[\sin A + \sin B = 2\sin \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\]
\[\cos A + \cos B = 2\cos \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\]
From the degree table, \[\cos 60^\circ = \dfrac{1}{2}\]. Finally, we can get the required solution.
Complete step-by-step answer:
We are given the term \[{e^{iA}}\] , \[{e^{iB}}\] , \[{e^{iC}}\] are in A.P. where \[A\] , \[B\], \[C\] are the angles of the triangle.
We know that exponential function \[{e^{i\theta }}\] can written as
\[{e^{i\theta }} = \cos \theta + i\sin \theta \].
We can write the following function with respect to the general form,
\[{e^{iA}} = \cos A + i\sin A\] , since \[\theta = A\] ----------(1)
\[{e^{iB}} = \cos B + i\sin B\], since \[\theta = B\] ----------(2)
\[{e^{iC}} = \cos C + i\sin C\], since \[\theta = C\] ----------(3)
Since, \[{e^{iA}}\] , \[{e^{iB}}\] , \[{e^{iC}}\] are Arithmetic Progression.
Hence, we know that the difference of two consecutive terms are equal to the A.P.
So, the difference of two consecutive terms are :
\[{e^{iB}} - {e^{iA}} = {e^{iC}} - {e^{iB}}\].
Expanding the function \[{e^{iB}}\] from RHS to LHS, we get
\[{e^{iB}} + {e^{iB}} = {e^{iA}} + {e^{iC}}\]
On simplifying we have ,
\[2{e^{iB}} = {e^{iA}} + {e^{iC}}\] ----------(4)
By substituting the equation (1), (2) and (3) in equation (4), it can be written as
\[2(\cos B + i\sin B) = (\cos A + \cos C) + i(\sin A + \sin C)\]
\[2\cos B + i(2\sin B) = (\cos A + \cos C) + i(\sin A + \sin C)\]
Comparing the reals and imaginary parts, we have
Real part: \[2\cos B = \cos A + \cos C\] ----------(5)
Imaginary part: \[2\sin B = \sin A + \sin C\] ----------(6)
On comparing this trigonometric identity with above equation,
We know that the formulas are, \[\sin A + \sin B = 2\sin \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\] and \[\cos A + \cos B = 2\cos \dfrac{{(A + B)}}{2}\cos \dfrac{{(A - B)}}{2}\].
From this formula, we can write the equation (5) and (6) as follows:
Real part: \[2\cos B = \cos A + \cos C = 2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}\] ---------(7)
Imaginary part: \[2\sin B = \sin A + \sin C = 2\sin \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}\] --------(8)
On dividing the equation (8) by equation (7), then
\[\tan B = \dfrac{{2\sin B}}{{2\cos B}} = \dfrac{{2\sin \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}}}{{2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}}}\]
On further simplifying, we can get
\[\tan B = \dfrac{{\sin \dfrac{{(A + C)}}{2}}}{{\cos \dfrac{{(A + C)}}{2}}}\]
Now, on comparing the trigonometric identity, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ with above equation, then
\[\tan B = \tan \dfrac{{(A + C)}}{2}\]
Here, On comparing the angels we have
\[B = \dfrac{{(A + C)}}{2}\] ----------(9)
\[2B = A + C\]
Adding \[B\] on both sides, we have
\[2B + B = A + B + C\]
We know that the sum of angle of a triangle is \[180^\circ \].
\[3B = {180^ \circ }\], since \[A + B + C = {180^ \circ }\]
\[B = \dfrac{{{{180}^ \circ }}}{3}\]
Hence, \[B = 60^\circ \].
From the trigonometric degree table, $\cos {60^ \circ } = \dfrac{1}{2}$
Substitute the value \[B = 60^\circ \] in equation (5)
\[2\cos B = \cos A + \cos C \Rightarrow \cos A + \cos C = 2\cos {60^ \circ }\]
\[ \Rightarrow \cos A + \cos C = 2 \times \dfrac{1}{2}\] . Since, \[B = 60^\circ \]
\[ \Rightarrow \cos A + \cos C = 1\]
We use this formula, \[\cos A + \cos C = 2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2}\].
\[ \Rightarrow 2\cos \dfrac{{(A + C)}}{2}\cos \dfrac{{(A - C)}}{2} = 1\]
\[ \Rightarrow 2\cos B\cos \dfrac{{(A - C)}}{2} = 1\].
Since, \[B = 60^\circ \Rightarrow \cos {60^ \circ } = \dfrac{1}{2}\]
\[ \Rightarrow 2 \times \dfrac{1}{2} \times \cos \dfrac{{(A - C)}}{2} = 1\]
\[ \Rightarrow \cos \dfrac{{(A - C)}}{2} = 1\]
By expanding the cosine of LHS to RHS, so it will be written as cosine inverse, then
\[ \Rightarrow \dfrac{{(A - C)}}{2} = {\cos ^{ - 1}}(1)\]
We know that ${\cos ^{ - 1}}(1) = {0^ \circ }$
\[ \Rightarrow \dfrac{{(A - C)}}{2} = 0^\circ \]
Now, we get
$A - C = 0$
Therefore, \[A = C\].
We have \[B = 60^\circ \] and \[A = C\],
Since, the sum of the three sides are equal to ${180^ \circ }$
So, $A + B + C = {180^ \circ } \Rightarrow {60^ \circ } + {60^ \circ } + {60^ \circ } = {180^ \circ }$
We can show a diagrammatic representation of the triangle as follows.

Therefore, \[A = 60^\circ \], \[B = 60^\circ \] and \[C = 60^\circ \]. So, it is an equilateral triangle.
Hence, Given that \[{e^{iA}}\] , \[{e^{iB}}\] , \[{e^{iC}}\] are in A.P. where \[A\] , \[B\], \[C\] are the angles of the triangle , then the triangle is equilateral triangle.
As a result, The option B is the correct one.
So, the correct answer is “Option B”.
Note: The terms of A.P. differ by common difference (d) and Sum of angles of the triangle is \[180^\circ \]. This is the problem of arithmetic progression.
Arithmetic progression is the branch of mathematics which deals with sequence of numbers (i.e. Terms ) whose each term differ by a common difference (denoted by d ).
For example: \[a\] , \[a + d\], \[a + 2d\], \[a + 3d\] and so on . Here each term differs by common difference.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
