
Given that ${{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}}$ form an arithmetic progression, find the following sum $S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}$
(A) $S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n \right)+\dfrac{\left( n-2 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
(B) $S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-2 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
(C) $S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-1 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
(D) $S=\dfrac{n}{2}\left[ a_{1}^{3}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-1 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
Answer
564.9k+ views
Hint: For answering this question we will use the basic concept regarding the arithmetic progressions. When given ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms arithmetic progression we can say that ${{a}_{i+1}}={{a}_{i}}+d$ and ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$ where $d={{a}_{2}}-{{a}_{1}}$ and the sum of the $n$ term which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right]$
Complete step-by-step solution:
Now considering from the question we have been given that ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms arithmetic progression. So we can say that ${{a}_{i+1}}={{a}_{i}}+d$ because ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$ where $d={{a}_{2}}-{{a}_{1}}$ .
For answering this question we need to find the sum $S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}$
By substituting the respective values we will have,
$\begin{align}
& S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{{{a}_{i}}+{{a}_{i}}+2d}} \\
& \Rightarrow S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{2\left( {{a}_{i}}+d \right)}} \\
& \Rightarrow S=\dfrac{1}{2}\left[ \sum\limits_{i=1}^{n}{a_{i}^{2}+\sum\limits_{i=1}^{n}{2{{a}_{i}}d}} \right] \\
\end{align}$
Now, we will write the expansion of $\sum\limits_{i=1}^{n}{a_{i}^{2}}$
$\begin{align}
& \sum\limits_{i=1}^{n}{a_{i}^{2}}={{\sum\limits_{i=1}^{n}{\left( {{a}_{i}}+\left( i-1 \right)d \right)}}^{2}} \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left( a_{i}^{2}+{{d}^{2}}{{\left( i-1 \right)}^{2}}+2{{a}_{i}}d\left( i-1 \right) \right)} \\
\end{align}$
By expanding the terms $\sum\limits_{i=1}^{n}{\left( i-1 \right)}$ and $\sum\limits_{i=1}^{n}{{{\left( i-1 \right)}^{2}}}$, we will get the below equation using $\sum\limits_{i=1}^{n}{i}=\dfrac{n\left( n-1 \right)}{2}$ and $\sum\limits_{i=1}^{n}{{{i}^{2}}}=\dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6}$ we will have $\sum\limits_{i=1}^{n}{a_{i}^{2}}=na_{i}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{i}}d\left( \dfrac{n\left( n-1 \right)}{2} \right)$
We will also use the formulae for the sum of $n$ terms which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] $
Now, by using this value, we will get the below equation. After substituting we will simplify the equation more further very carefully.
$\begin{align}
& S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2d\left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n -1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2{{a}_{1}}dn+{{d}^{2}}n\left( n -1 \right) \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}n\left( n-1 \right)\left[ \dfrac{2n-1}{6}+1 \right]+2{{a}_{1}}dn\left[ \dfrac{n -1}{2}+1 \right] \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+\left( \dfrac{{{d}^{2}}n\left( n-1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}dn\left( n+1 \right) \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ a_{1}^{2}+\left( \dfrac{{{d}^{2}}\left( n -1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}d\left( n+1 \right) \right] \\
\end{align}$
Therefore option C is the correct option.
Note: While answering questions of this type we should be sure with the concept and expansions we make. Similar to arithmetic progression there exist geometric progression when given ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms geometric progression we can say that ${{a}_{i+1}}={{a}_{i}}r$ and ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r=\dfrac{{{a}_{2}}}{{{a}_{1}}}$ and the sum of the $n$ term which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}=\dfrac{{{a}_{1}}\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}$.
Complete step-by-step solution:
Now considering from the question we have been given that ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms arithmetic progression. So we can say that ${{a}_{i+1}}={{a}_{i}}+d$ because ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$ where $d={{a}_{2}}-{{a}_{1}}$ .
For answering this question we need to find the sum $S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}$
By substituting the respective values we will have,
$\begin{align}
& S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{{{a}_{i}}+{{a}_{i}}+2d}} \\
& \Rightarrow S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{2\left( {{a}_{i}}+d \right)}} \\
& \Rightarrow S=\dfrac{1}{2}\left[ \sum\limits_{i=1}^{n}{a_{i}^{2}+\sum\limits_{i=1}^{n}{2{{a}_{i}}d}} \right] \\
\end{align}$
Now, we will write the expansion of $\sum\limits_{i=1}^{n}{a_{i}^{2}}$
$\begin{align}
& \sum\limits_{i=1}^{n}{a_{i}^{2}}={{\sum\limits_{i=1}^{n}{\left( {{a}_{i}}+\left( i-1 \right)d \right)}}^{2}} \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left( a_{i}^{2}+{{d}^{2}}{{\left( i-1 \right)}^{2}}+2{{a}_{i}}d\left( i-1 \right) \right)} \\
\end{align}$
By expanding the terms $\sum\limits_{i=1}^{n}{\left( i-1 \right)}$ and $\sum\limits_{i=1}^{n}{{{\left( i-1 \right)}^{2}}}$, we will get the below equation using $\sum\limits_{i=1}^{n}{i}=\dfrac{n\left( n-1 \right)}{2}$ and $\sum\limits_{i=1}^{n}{{{i}^{2}}}=\dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6}$ we will have $\sum\limits_{i=1}^{n}{a_{i}^{2}}=na_{i}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{i}}d\left( \dfrac{n\left( n-1 \right)}{2} \right)$
We will also use the formulae for the sum of $n$ terms which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] $
Now, by using this value, we will get the below equation. After substituting we will simplify the equation more further very carefully.
$\begin{align}
& S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2d\left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n -1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2{{a}_{1}}dn+{{d}^{2}}n\left( n -1 \right) \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}n\left( n-1 \right)\left[ \dfrac{2n-1}{6}+1 \right]+2{{a}_{1}}dn\left[ \dfrac{n -1}{2}+1 \right] \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+\left( \dfrac{{{d}^{2}}n\left( n-1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}dn\left( n+1 \right) \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ a_{1}^{2}+\left( \dfrac{{{d}^{2}}\left( n -1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}d\left( n+1 \right) \right] \\
\end{align}$
Therefore option C is the correct option.
Note: While answering questions of this type we should be sure with the concept and expansions we make. Similar to arithmetic progression there exist geometric progression when given ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms geometric progression we can say that ${{a}_{i+1}}={{a}_{i}}r$ and ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r=\dfrac{{{a}_{2}}}{{{a}_{1}}}$ and the sum of the $n$ term which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}=\dfrac{{{a}_{1}}\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

