Given that ${{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}}$ form an arithmetic progression, find the following sum $S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}$
(A) $S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n \right)+\dfrac{\left( n-2 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
(B) $S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-2 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
(C) $S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-1 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
(D) $S=\dfrac{n}{2}\left[ a_{1}^{3}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-1 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]$
Answer
Verified
451.2k+ views
Hint: For answering this question we will use the basic concept regarding the arithmetic progressions. When given ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms arithmetic progression we can say that ${{a}_{i+1}}={{a}_{i}}+d$ and ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$ where $d={{a}_{2}}-{{a}_{1}}$ and the sum of the $n$ term which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right]$
Complete step-by-step solution:
Now considering from the question we have been given that ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms arithmetic progression. So we can say that ${{a}_{i+1}}={{a}_{i}}+d$ because ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$ where $d={{a}_{2}}-{{a}_{1}}$ .
For answering this question we need to find the sum $S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}$
By substituting the respective values we will have,
$\begin{align}
& S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{{{a}_{i}}+{{a}_{i}}+2d}} \\
& \Rightarrow S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{2\left( {{a}_{i}}+d \right)}} \\
& \Rightarrow S=\dfrac{1}{2}\left[ \sum\limits_{i=1}^{n}{a_{i}^{2}+\sum\limits_{i=1}^{n}{2{{a}_{i}}d}} \right] \\
\end{align}$
Now, we will write the expansion of $\sum\limits_{i=1}^{n}{a_{i}^{2}}$
$\begin{align}
& \sum\limits_{i=1}^{n}{a_{i}^{2}}={{\sum\limits_{i=1}^{n}{\left( {{a}_{i}}+\left( i-1 \right)d \right)}}^{2}} \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left( a_{i}^{2}+{{d}^{2}}{{\left( i-1 \right)}^{2}}+2{{a}_{i}}d\left( i-1 \right) \right)} \\
\end{align}$
By expanding the terms $\sum\limits_{i=1}^{n}{\left( i-1 \right)}$ and $\sum\limits_{i=1}^{n}{{{\left( i-1 \right)}^{2}}}$, we will get the below equation using $\sum\limits_{i=1}^{n}{i}=\dfrac{n\left( n-1 \right)}{2}$ and $\sum\limits_{i=1}^{n}{{{i}^{2}}}=\dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6}$ we will have $\sum\limits_{i=1}^{n}{a_{i}^{2}}=na_{i}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{i}}d\left( \dfrac{n\left( n-1 \right)}{2} \right)$
We will also use the formulae for the sum of $n$ terms which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] $
Now, by using this value, we will get the below equation. After substituting we will simplify the equation more further very carefully.
$\begin{align}
& S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2d\left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n -1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2{{a}_{1}}dn+{{d}^{2}}n\left( n -1 \right) \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}n\left( n-1 \right)\left[ \dfrac{2n-1}{6}+1 \right]+2{{a}_{1}}dn\left[ \dfrac{n -1}{2}+1 \right] \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+\left( \dfrac{{{d}^{2}}n\left( n-1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}dn\left( n+1 \right) \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ a_{1}^{2}+\left( \dfrac{{{d}^{2}}\left( n -1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}d\left( n+1 \right) \right] \\
\end{align}$
Therefore option C is the correct option.
Note: While answering questions of this type we should be sure with the concept and expansions we make. Similar to arithmetic progression there exist geometric progression when given ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms geometric progression we can say that ${{a}_{i+1}}={{a}_{i}}r$ and ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r=\dfrac{{{a}_{2}}}{{{a}_{1}}}$ and the sum of the $n$ term which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}=\dfrac{{{a}_{1}}\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}$.
Complete step-by-step solution:
Now considering from the question we have been given that ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms arithmetic progression. So we can say that ${{a}_{i+1}}={{a}_{i}}+d$ because ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$ where $d={{a}_{2}}-{{a}_{1}}$ .
For answering this question we need to find the sum $S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}$
By substituting the respective values we will have,
$\begin{align}
& S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{{{a}_{i}}+{{a}_{i}}+2d}} \\
& \Rightarrow S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{2\left( {{a}_{i}}+d \right)}} \\
& \Rightarrow S=\dfrac{1}{2}\left[ \sum\limits_{i=1}^{n}{a_{i}^{2}+\sum\limits_{i=1}^{n}{2{{a}_{i}}d}} \right] \\
\end{align}$
Now, we will write the expansion of $\sum\limits_{i=1}^{n}{a_{i}^{2}}$
$\begin{align}
& \sum\limits_{i=1}^{n}{a_{i}^{2}}={{\sum\limits_{i=1}^{n}{\left( {{a}_{i}}+\left( i-1 \right)d \right)}}^{2}} \\
& \Rightarrow \sum\limits_{i=1}^{n}{\left( a_{i}^{2}+{{d}^{2}}{{\left( i-1 \right)}^{2}}+2{{a}_{i}}d\left( i-1 \right) \right)} \\
\end{align}$
By expanding the terms $\sum\limits_{i=1}^{n}{\left( i-1 \right)}$ and $\sum\limits_{i=1}^{n}{{{\left( i-1 \right)}^{2}}}$, we will get the below equation using $\sum\limits_{i=1}^{n}{i}=\dfrac{n\left( n-1 \right)}{2}$ and $\sum\limits_{i=1}^{n}{{{i}^{2}}}=\dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6}$ we will have $\sum\limits_{i=1}^{n}{a_{i}^{2}}=na_{i}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{i}}d\left( \dfrac{n\left( n-1 \right)}{2} \right)$
We will also use the formulae for the sum of $n$ terms which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] $
Now, by using this value, we will get the below equation. After substituting we will simplify the equation more further very carefully.
$\begin{align}
& S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2d\left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n -1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2{{a}_{1}}dn+{{d}^{2}}n\left( n -1 \right) \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}n\left( n-1 \right)\left[ \dfrac{2n-1}{6}+1 \right]+2{{a}_{1}}dn\left[ \dfrac{n -1}{2}+1 \right] \right] \\
& \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+\left( \dfrac{{{d}^{2}}n\left( n-1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}dn\left( n+1 \right) \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ a_{1}^{2}+\left( \dfrac{{{d}^{2}}\left( n -1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}d\left( n+1 \right) \right] \\
\end{align}$
Therefore option C is the correct option.
Note: While answering questions of this type we should be sure with the concept and expansions we make. Similar to arithmetic progression there exist geometric progression when given ${{a}_{1}},{{a}_{2}},.............{{a}_{n}}$ forms geometric progression we can say that ${{a}_{i+1}}={{a}_{i}}r$ and ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r=\dfrac{{{a}_{2}}}{{{a}_{1}}}$ and the sum of the $n$ term which is given as ${{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}=\dfrac{{{a}_{1}}\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}$.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Biology: Engaging Questions & Answers for Success
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE