Answer
Verified
390k+ views
Hint: We are given the expression $\log \dfrac{10x}{{{y}^{2}}}$ and we need to express it in terms of m and n, where $\log x=m+n$ and $\log y=m-n$ . We have to use various properties of logarithms like $\log \dfrac{a}{b}=\log a-\log b$ , $\log ab=\log a+\log b$ and $\log {{a}^{b}}=b\log a$ to solve this problem. Using these, we first convert the expression to $\log 10x-\log {{y}^{2}}$ . After that, we write $\log 10x$ as $\log 10+\log x$ and $\log {{y}^{2}}$ as $2\log y$ . Having got the expressions $\operatorname{logx},logy$ , we substitute them according to the given and then get our final answer.
Complete step-by-step solution:
It is given that
$\log x=m+n....\left( i \right)$
$\log y=m-n....\left( ii \right)$
The expression that we are given to express in terms of m and n is $\log \dfrac{10x}{{{y}^{2}}}$ . Using the property of logarithms that $\log \dfrac{a}{b}=\log a-\log b$ , we get,
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\log 10x-\log {{y}^{2}}$
Again, using the property of logarithms that $\log ab=\log a+\log b$ , we get,
$\Rightarrow \log 10x=\log 10+\log x....\left( iii \right)$
Again, using the property of logarithms that $\log {{a}^{b}}=b\log a$ , we get,
$\Rightarrow \log {{y}^{2}}=2\log y....\left( iv \right)$
Now, using equation (i) in equation (iii), we get,
$\Rightarrow \log 10x=\log 10+m+n....\left( v \right)$
Using equation (ii) in equation (iv), we get,
$\Rightarrow \log {{y}^{2}}=2\left( m-n \right)....\left( vi \right)$
The given expression thus becomes, after using equations (v) and (vi),
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\left( \log 10+m+n \right)-2\left( m-n \right)$
This can be simplified by multiplying the $2$ inside the bracket and then opening up the brackets. After doing so, we get,
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\log 10+m+n-2m+2n$
Performing the additions and subtractions, we get,
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\log 10-m+3n$
Thus, we can conclude that the given expression can be written as $\log 10-m+3n$ in terms of m and n.
Note: Understanding the necessary approach of the problem is what’s needed the most. At first, simplifying the expression to the simplest form possible is required. Else, it creates confusion. Also, students sometimes make mistakes in the formula. They write $\log \left( a+b \right)=\log a+\log b$ and $\log \left( a-b \right)=\log a-\log b$ . These should be avoided.
Complete step-by-step solution:
It is given that
$\log x=m+n....\left( i \right)$
$\log y=m-n....\left( ii \right)$
The expression that we are given to express in terms of m and n is $\log \dfrac{10x}{{{y}^{2}}}$ . Using the property of logarithms that $\log \dfrac{a}{b}=\log a-\log b$ , we get,
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\log 10x-\log {{y}^{2}}$
Again, using the property of logarithms that $\log ab=\log a+\log b$ , we get,
$\Rightarrow \log 10x=\log 10+\log x....\left( iii \right)$
Again, using the property of logarithms that $\log {{a}^{b}}=b\log a$ , we get,
$\Rightarrow \log {{y}^{2}}=2\log y....\left( iv \right)$
Now, using equation (i) in equation (iii), we get,
$\Rightarrow \log 10x=\log 10+m+n....\left( v \right)$
Using equation (ii) in equation (iv), we get,
$\Rightarrow \log {{y}^{2}}=2\left( m-n \right)....\left( vi \right)$
The given expression thus becomes, after using equations (v) and (vi),
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\left( \log 10+m+n \right)-2\left( m-n \right)$
This can be simplified by multiplying the $2$ inside the bracket and then opening up the brackets. After doing so, we get,
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\log 10+m+n-2m+2n$
Performing the additions and subtractions, we get,
$\Rightarrow \log \dfrac{10x}{{{y}^{2}}}=\log 10-m+3n$
Thus, we can conclude that the given expression can be written as $\log 10-m+3n$ in terms of m and n.
Note: Understanding the necessary approach of the problem is what’s needed the most. At first, simplifying the expression to the simplest form possible is required. Else, it creates confusion. Also, students sometimes make mistakes in the formula. They write $\log \left( a+b \right)=\log a+\log b$ and $\log \left( a-b \right)=\log a-\log b$ . These should be avoided.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths