Given $\log 2$ and $\log 3$ , find the value of $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$ .
Last updated date: 29th Mar 2023
•
Total views: 308.4k
•
Views today: 5.85k
Answer
308.4k+ views
Hint: The given question is related to logarithms and its properties. Try to recall the properties of logarithms which are related to logarithm of product and division of two numbers and logarithms of numbers with exponents.
Complete step-by-step answer:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Now , we know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[3]{48}$ as ${{48}^{\dfrac{1}{3}}}$ and $\sqrt[12]{6}$ as ${{6}^{\dfrac{1}{12}}}$ .
Now , we need to find the value of $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$.
We know , $\sqrt[3]{48}={{48}^{\dfrac{1}{3}}}$ and $\sqrt[12]{6}={{6}^{\dfrac{1}{12}}}$. So , $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\log \left( {{48}^{\dfrac{1}{3}}}\times {{108}^{\dfrac{1}{4}}}\div {{6}^{\dfrac{1}{12}}} \right)$.
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$.
So, $\log \left( {{48}^{\dfrac{1}{3}}}\times {{108}^{\dfrac{1}{4}}}\div {{6}^{\dfrac{1}{12}}} \right)=\log \left( {{48}^{\dfrac{1}{3}}} \right)+\log \left( {{108}^{\dfrac{1}{4}}} \right)-\log \left( {{6}^{\dfrac{1}{12}}} \right)$.
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\log \left( {{48}^{\dfrac{1}{3}}} \right)+\log \left( {{108}^{\dfrac{1}{4}}} \right)-\log \left( {{6}^{\dfrac{1}{12}}} \right)=\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)$
We know we can write $48$ as $2\times 2\times 2\times 2\times 3$ ; $108$ as $2\times 2\times 3\times 3\times 3$ and $6$ as $2\times 3$.
So , $\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)=\dfrac{1}{3}\left( \log \left( 2\times 2\times 2\times 2\times 3 \right) \right)+\dfrac{1}{4}\left( \log \left( 2\times 2\times 3\times 3\times 3 \right) \right)-\dfrac{1}{12}\left( \log \left( 2\times 3 \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 2\times 2\times 2\times 3 \right)$ as $\log 2+\log 2+\log 2+\log 2+\log 3=4\log 2+\log 3$.
Again , $\log \left( 2\times 2\times 3\times 3\times 3 \right)=\log 2+\log 2+\log 3+\log 3+\log 3=2\log 2+3\log 3$.
And , $\log \left( 2\times 3 \right)=\log 2+\log 3$
Now , after calculating all these values , we can write $\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)$ as $\dfrac{1}{3}\left( 4\log 2+\log 3 \right)+\dfrac{1}{4}\left( 2\log 2+3\log 3 \right)-\dfrac{1}{12}\left( \log 2+\log 3 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\dfrac{4}{3}\log 2+\dfrac{1}{3}\log 3+\dfrac{2}{4}\log 2+\dfrac{3}{4}\log 3-\dfrac{1}{12}\log 2-\dfrac{1}{12}\log 3$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\dfrac{4}{3}\log 2+\dfrac{2}{4}\log 2-\dfrac{1}{12}\log 2+\dfrac{3}{4}\log 3+\dfrac{1}{3}\log 3-\dfrac{1}{12}\log 3$.
Now , we will take $\log 2$ and $\log 3$ common.
So , we get $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\log 2\left( \dfrac{4}{3}+\dfrac{2}{4}-\dfrac{1}{12} \right)+\log 3\left( \dfrac{3}{4}+\dfrac{1}{3}-\dfrac{1}{12} \right)$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 4=4\times 1 \\
& 12=4\times 3\times 1 \\
\end{align}\]
So , the LCM of the denominators is $4\times 3=12$.
So , $\left( \dfrac{4}{3}+\dfrac{2}{4}-\dfrac{1}{12} \right)=\dfrac{16+6-1}{12}=\dfrac{21}{12}=\dfrac{7}{4}$ and $\left( \dfrac{3}{4}+\dfrac{1}{3}-\dfrac{1}{12} \right)=\dfrac{9+4-1}{12}=\dfrac{12}{12}=1$
So , we can write $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$ as $\dfrac{7}{4}\log 2+\log 3$ .
Hence , the value of $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$ is $\dfrac{7}{4}\log 2+\log 3$.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Complete step-by-step answer:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Now , we know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[3]{48}$ as ${{48}^{\dfrac{1}{3}}}$ and $\sqrt[12]{6}$ as ${{6}^{\dfrac{1}{12}}}$ .
Now , we need to find the value of $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$.
We know , $\sqrt[3]{48}={{48}^{\dfrac{1}{3}}}$ and $\sqrt[12]{6}={{6}^{\dfrac{1}{12}}}$. So , $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\log \left( {{48}^{\dfrac{1}{3}}}\times {{108}^{\dfrac{1}{4}}}\div {{6}^{\dfrac{1}{12}}} \right)$.
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$.
So, $\log \left( {{48}^{\dfrac{1}{3}}}\times {{108}^{\dfrac{1}{4}}}\div {{6}^{\dfrac{1}{12}}} \right)=\log \left( {{48}^{\dfrac{1}{3}}} \right)+\log \left( {{108}^{\dfrac{1}{4}}} \right)-\log \left( {{6}^{\dfrac{1}{12}}} \right)$.
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\log \left( {{48}^{\dfrac{1}{3}}} \right)+\log \left( {{108}^{\dfrac{1}{4}}} \right)-\log \left( {{6}^{\dfrac{1}{12}}} \right)=\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)$
We know we can write $48$ as $2\times 2\times 2\times 2\times 3$ ; $108$ as $2\times 2\times 3\times 3\times 3$ and $6$ as $2\times 3$.
So , $\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)=\dfrac{1}{3}\left( \log \left( 2\times 2\times 2\times 2\times 3 \right) \right)+\dfrac{1}{4}\left( \log \left( 2\times 2\times 3\times 3\times 3 \right) \right)-\dfrac{1}{12}\left( \log \left( 2\times 3 \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 2\times 2\times 2\times 3 \right)$ as $\log 2+\log 2+\log 2+\log 2+\log 3=4\log 2+\log 3$.
Again , $\log \left( 2\times 2\times 3\times 3\times 3 \right)=\log 2+\log 2+\log 3+\log 3+\log 3=2\log 2+3\log 3$.
And , $\log \left( 2\times 3 \right)=\log 2+\log 3$
Now , after calculating all these values , we can write $\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)$ as $\dfrac{1}{3}\left( 4\log 2+\log 3 \right)+\dfrac{1}{4}\left( 2\log 2+3\log 3 \right)-\dfrac{1}{12}\left( \log 2+\log 3 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\dfrac{4}{3}\log 2+\dfrac{1}{3}\log 3+\dfrac{2}{4}\log 2+\dfrac{3}{4}\log 3-\dfrac{1}{12}\log 2-\dfrac{1}{12}\log 3$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\dfrac{4}{3}\log 2+\dfrac{2}{4}\log 2-\dfrac{1}{12}\log 2+\dfrac{3}{4}\log 3+\dfrac{1}{3}\log 3-\dfrac{1}{12}\log 3$.
Now , we will take $\log 2$ and $\log 3$ common.
So , we get $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\log 2\left( \dfrac{4}{3}+\dfrac{2}{4}-\dfrac{1}{12} \right)+\log 3\left( \dfrac{3}{4}+\dfrac{1}{3}-\dfrac{1}{12} \right)$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 4=4\times 1 \\
& 12=4\times 3\times 1 \\
\end{align}\]
So , the LCM of the denominators is $4\times 3=12$.
So , $\left( \dfrac{4}{3}+\dfrac{2}{4}-\dfrac{1}{12} \right)=\dfrac{16+6-1}{12}=\dfrac{21}{12}=\dfrac{7}{4}$ and $\left( \dfrac{3}{4}+\dfrac{1}{3}-\dfrac{1}{12} \right)=\dfrac{9+4-1}{12}=\dfrac{12}{12}=1$
So , we can write $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$ as $\dfrac{7}{4}\log 2+\log 3$ .
Hence , the value of $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$ is $\dfrac{7}{4}\log 2+\log 3$.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
