
Given \[\Delta ABC\] right angled at C in which AB = 29 units, BC = 21 units and \[\angle ABC=\theta \]. Find \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Answer
518.1k+ views
Hint:Given two sides of the right angled triangle. Find the \[{{3}^{rd}}\] side, by using basic geometry. Find the value of \[\sin \theta \] and \[\cos \theta \] from the figure. Substitute these values in \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \] and get the value.
Complete step-by-step answer:
Consider the figure drawn,
From, \[\vartriangle ABC\], AB = 29 units and BC = 21 units, \[\angle ABC=\theta \].
Using Pythagoras theorem,
\[\begin{align}
& {{\left( Hypotenuse \right)}^{2}}={{\left( Height \right)}^{2}}+{{\left( Base \right)}^{2}} \\
& \Rightarrow A{{B}^{2}}=A{{C}^{2}}+A{{B}^{2}} \\
& A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
& A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}} \\
\end{align}\]
Using, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& A{{C}^{2}}=\left( 29-21 \right)\left( 29+21 \right) \\
& A{{C}^{2}}=8\times 50=400 \\
& \therefore AC=\sqrt{400}=20 \\
\end{align}\]
Now, \[\sin \theta \]= \[\dfrac{Opposite side}{Hypotenuse side}\].
\[\sin \theta =\dfrac{AC}{AB}=\dfrac{20}{29}\]
\[\cos \theta \]= \[\dfrac{Adjacent side}{Hypotenuse side}\].
\[\cos \theta =\dfrac{BC}{AB}=\dfrac{21}{29}\]
We need to find the value of \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Putting values of \[\cos \theta =\dfrac{21}{29}\] and \[\sin \theta =\dfrac{20}{29}\].
\[\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta ={{\left( \dfrac{21}{29} \right)}^{2}}-{{\left( \dfrac{20}{29} \right)}^{2}}=\dfrac{{{21}^{2}}-{{20}^{2}}}{{{29}^{2}}} \\
& \because {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \Rightarrow \dfrac{\left( 21-20 \right)\left( 21+20 \right)}{{{29}^{2}}}=\dfrac{1\times 41}{{{29}^{2}}}=\dfrac{41}{841} \\
& \therefore {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\dfrac{41}{841} \\
\end{align}\]
Note: Find altitude of the \[\Delta ABC\], which will give the values of \[\cos \theta \] and \[\sin \theta \]. Put the values in the entity to find the desired answer.Students should remember pythagoras theorem , trigonometric identities and trigonometric ratios for solving these types of problems.
Complete step-by-step answer:
Consider the figure drawn,

From, \[\vartriangle ABC\], AB = 29 units and BC = 21 units, \[\angle ABC=\theta \].
Using Pythagoras theorem,
\[\begin{align}
& {{\left( Hypotenuse \right)}^{2}}={{\left( Height \right)}^{2}}+{{\left( Base \right)}^{2}} \\
& \Rightarrow A{{B}^{2}}=A{{C}^{2}}+A{{B}^{2}} \\
& A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
& A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}} \\
\end{align}\]
Using, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& A{{C}^{2}}=\left( 29-21 \right)\left( 29+21 \right) \\
& A{{C}^{2}}=8\times 50=400 \\
& \therefore AC=\sqrt{400}=20 \\
\end{align}\]
Now, \[\sin \theta \]= \[\dfrac{Opposite side}{Hypotenuse side}\].
\[\sin \theta =\dfrac{AC}{AB}=\dfrac{20}{29}\]
\[\cos \theta \]= \[\dfrac{Adjacent side}{Hypotenuse side}\].
\[\cos \theta =\dfrac{BC}{AB}=\dfrac{21}{29}\]
We need to find the value of \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Putting values of \[\cos \theta =\dfrac{21}{29}\] and \[\sin \theta =\dfrac{20}{29}\].
\[\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta ={{\left( \dfrac{21}{29} \right)}^{2}}-{{\left( \dfrac{20}{29} \right)}^{2}}=\dfrac{{{21}^{2}}-{{20}^{2}}}{{{29}^{2}}} \\
& \because {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \Rightarrow \dfrac{\left( 21-20 \right)\left( 21+20 \right)}{{{29}^{2}}}=\dfrac{1\times 41}{{{29}^{2}}}=\dfrac{41}{841} \\
& \therefore {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\dfrac{41}{841} \\
\end{align}\]
Note: Find altitude of the \[\Delta ABC\], which will give the values of \[\cos \theta \] and \[\sin \theta \]. Put the values in the entity to find the desired answer.Students should remember pythagoras theorem , trigonometric identities and trigonometric ratios for solving these types of problems.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
