
Given \[\Delta ABC\] right angled at C in which AB = 29 units, BC = 21 units and \[\angle ABC=\theta \]. Find \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Answer
599.1k+ views
Hint:Given two sides of the right angled triangle. Find the \[{{3}^{rd}}\] side, by using basic geometry. Find the value of \[\sin \theta \] and \[\cos \theta \] from the figure. Substitute these values in \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \] and get the value.
Complete step-by-step answer:
Consider the figure drawn,
From, \[\vartriangle ABC\], AB = 29 units and BC = 21 units, \[\angle ABC=\theta \].
Using Pythagoras theorem,
\[\begin{align}
& {{\left( Hypotenuse \right)}^{2}}={{\left( Height \right)}^{2}}+{{\left( Base \right)}^{2}} \\
& \Rightarrow A{{B}^{2}}=A{{C}^{2}}+A{{B}^{2}} \\
& A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
& A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}} \\
\end{align}\]
Using, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& A{{C}^{2}}=\left( 29-21 \right)\left( 29+21 \right) \\
& A{{C}^{2}}=8\times 50=400 \\
& \therefore AC=\sqrt{400}=20 \\
\end{align}\]
Now, \[\sin \theta \]= \[\dfrac{Opposite side}{Hypotenuse side}\].
\[\sin \theta =\dfrac{AC}{AB}=\dfrac{20}{29}\]
\[\cos \theta \]= \[\dfrac{Adjacent side}{Hypotenuse side}\].
\[\cos \theta =\dfrac{BC}{AB}=\dfrac{21}{29}\]
We need to find the value of \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Putting values of \[\cos \theta =\dfrac{21}{29}\] and \[\sin \theta =\dfrac{20}{29}\].
\[\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta ={{\left( \dfrac{21}{29} \right)}^{2}}-{{\left( \dfrac{20}{29} \right)}^{2}}=\dfrac{{{21}^{2}}-{{20}^{2}}}{{{29}^{2}}} \\
& \because {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \Rightarrow \dfrac{\left( 21-20 \right)\left( 21+20 \right)}{{{29}^{2}}}=\dfrac{1\times 41}{{{29}^{2}}}=\dfrac{41}{841} \\
& \therefore {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\dfrac{41}{841} \\
\end{align}\]
Note: Find altitude of the \[\Delta ABC\], which will give the values of \[\cos \theta \] and \[\sin \theta \]. Put the values in the entity to find the desired answer.Students should remember pythagoras theorem , trigonometric identities and trigonometric ratios for solving these types of problems.
Complete step-by-step answer:
Consider the figure drawn,
From, \[\vartriangle ABC\], AB = 29 units and BC = 21 units, \[\angle ABC=\theta \].
Using Pythagoras theorem,
\[\begin{align}
& {{\left( Hypotenuse \right)}^{2}}={{\left( Height \right)}^{2}}+{{\left( Base \right)}^{2}} \\
& \Rightarrow A{{B}^{2}}=A{{C}^{2}}+A{{B}^{2}} \\
& A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
& A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}} \\
\end{align}\]
Using, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& A{{C}^{2}}=\left( 29-21 \right)\left( 29+21 \right) \\
& A{{C}^{2}}=8\times 50=400 \\
& \therefore AC=\sqrt{400}=20 \\
\end{align}\]
Now, \[\sin \theta \]= \[\dfrac{Opposite side}{Hypotenuse side}\].
\[\sin \theta =\dfrac{AC}{AB}=\dfrac{20}{29}\]
\[\cos \theta \]= \[\dfrac{Adjacent side}{Hypotenuse side}\].
\[\cos \theta =\dfrac{BC}{AB}=\dfrac{21}{29}\]
We need to find the value of \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Putting values of \[\cos \theta =\dfrac{21}{29}\] and \[\sin \theta =\dfrac{20}{29}\].
\[\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta ={{\left( \dfrac{21}{29} \right)}^{2}}-{{\left( \dfrac{20}{29} \right)}^{2}}=\dfrac{{{21}^{2}}-{{20}^{2}}}{{{29}^{2}}} \\
& \because {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \Rightarrow \dfrac{\left( 21-20 \right)\left( 21+20 \right)}{{{29}^{2}}}=\dfrac{1\times 41}{{{29}^{2}}}=\dfrac{41}{841} \\
& \therefore {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\dfrac{41}{841} \\
\end{align}\]
Note: Find altitude of the \[\Delta ABC\], which will give the values of \[\cos \theta \] and \[\sin \theta \]. Put the values in the entity to find the desired answer.Students should remember pythagoras theorem , trigonometric identities and trigonometric ratios for solving these types of problems.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

