
Given \[\Delta ABC\] right angled at C in which AB = 29 units, BC = 21 units and \[\angle ABC=\theta \]. Find \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Answer
613.5k+ views
Hint:Given two sides of the right angled triangle. Find the \[{{3}^{rd}}\] side, by using basic geometry. Find the value of \[\sin \theta \] and \[\cos \theta \] from the figure. Substitute these values in \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \] and get the value.
Complete step-by-step answer:
Consider the figure drawn,
From, \[\vartriangle ABC\], AB = 29 units and BC = 21 units, \[\angle ABC=\theta \].
Using Pythagoras theorem,
\[\begin{align}
& {{\left( Hypotenuse \right)}^{2}}={{\left( Height \right)}^{2}}+{{\left( Base \right)}^{2}} \\
& \Rightarrow A{{B}^{2}}=A{{C}^{2}}+A{{B}^{2}} \\
& A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
& A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}} \\
\end{align}\]
Using, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& A{{C}^{2}}=\left( 29-21 \right)\left( 29+21 \right) \\
& A{{C}^{2}}=8\times 50=400 \\
& \therefore AC=\sqrt{400}=20 \\
\end{align}\]
Now, \[\sin \theta \]= \[\dfrac{Opposite side}{Hypotenuse side}\].
\[\sin \theta =\dfrac{AC}{AB}=\dfrac{20}{29}\]
\[\cos \theta \]= \[\dfrac{Adjacent side}{Hypotenuse side}\].
\[\cos \theta =\dfrac{BC}{AB}=\dfrac{21}{29}\]
We need to find the value of \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Putting values of \[\cos \theta =\dfrac{21}{29}\] and \[\sin \theta =\dfrac{20}{29}\].
\[\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta ={{\left( \dfrac{21}{29} \right)}^{2}}-{{\left( \dfrac{20}{29} \right)}^{2}}=\dfrac{{{21}^{2}}-{{20}^{2}}}{{{29}^{2}}} \\
& \because {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \Rightarrow \dfrac{\left( 21-20 \right)\left( 21+20 \right)}{{{29}^{2}}}=\dfrac{1\times 41}{{{29}^{2}}}=\dfrac{41}{841} \\
& \therefore {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\dfrac{41}{841} \\
\end{align}\]
Note: Find altitude of the \[\Delta ABC\], which will give the values of \[\cos \theta \] and \[\sin \theta \]. Put the values in the entity to find the desired answer.Students should remember pythagoras theorem , trigonometric identities and trigonometric ratios for solving these types of problems.
Complete step-by-step answer:
Consider the figure drawn,
From, \[\vartriangle ABC\], AB = 29 units and BC = 21 units, \[\angle ABC=\theta \].
Using Pythagoras theorem,
\[\begin{align}
& {{\left( Hypotenuse \right)}^{2}}={{\left( Height \right)}^{2}}+{{\left( Base \right)}^{2}} \\
& \Rightarrow A{{B}^{2}}=A{{C}^{2}}+A{{B}^{2}} \\
& A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
& A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}} \\
\end{align}\]
Using, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& A{{C}^{2}}=\left( 29-21 \right)\left( 29+21 \right) \\
& A{{C}^{2}}=8\times 50=400 \\
& \therefore AC=\sqrt{400}=20 \\
\end{align}\]
Now, \[\sin \theta \]= \[\dfrac{Opposite side}{Hypotenuse side}\].
\[\sin \theta =\dfrac{AC}{AB}=\dfrac{20}{29}\]
\[\cos \theta \]= \[\dfrac{Adjacent side}{Hypotenuse side}\].
\[\cos \theta =\dfrac{BC}{AB}=\dfrac{21}{29}\]
We need to find the value of \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \].
Putting values of \[\cos \theta =\dfrac{21}{29}\] and \[\sin \theta =\dfrac{20}{29}\].
\[\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta ={{\left( \dfrac{21}{29} \right)}^{2}}-{{\left( \dfrac{20}{29} \right)}^{2}}=\dfrac{{{21}^{2}}-{{20}^{2}}}{{{29}^{2}}} \\
& \because {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \Rightarrow \dfrac{\left( 21-20 \right)\left( 21+20 \right)}{{{29}^{2}}}=\dfrac{1\times 41}{{{29}^{2}}}=\dfrac{41}{841} \\
& \therefore {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\dfrac{41}{841} \\
\end{align}\]
Note: Find altitude of the \[\Delta ABC\], which will give the values of \[\cos \theta \] and \[\sin \theta \]. Put the values in the entity to find the desired answer.Students should remember pythagoras theorem , trigonometric identities and trigonometric ratios for solving these types of problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

