# Given $\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$. Find the value of a.

Last updated date: 27th Mar 2023

•

Total views: 307.2k

•

Views today: 4.87k

Answer

Verified

307.2k+ views

Hint: We should know about the common trigonometric identities and numeric values to solve this problem.

Complete step-by-step answer:

To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-

$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$

Further, we should also know the values to following trigonometric angles-

$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$

$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$

Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,

We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-

= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)

= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$

= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$

Now, $\cos $ (-x) = $\cos $(x), Thus, we have,

= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)

Further, $\sin $(90-x) =$\cos $ (x)

Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$

Substituting this value in (A), we get,

= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$

Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.

Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$

=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$

=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$

=$-\dfrac{1}{2}$

According to the question,

$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$

Thus,

$-\dfrac{1}{2}$=$-\dfrac{1}{a}$

Thus, a = 2.

Hence, the final answer is a = 2.

Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.

Complete step-by-step answer:

To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-

$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$

Further, we should also know the values to following trigonometric angles-

$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$

$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$

Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,

We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-

= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)

= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$

= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$

Now, $\cos $ (-x) = $\cos $(x), Thus, we have,

= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)

Further, $\sin $(90-x) =$\cos $ (x)

Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$

Substituting this value in (A), we get,

= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$

Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.

Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$

=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$

=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$

=$-\dfrac{1}{2}$

According to the question,

$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$

Thus,

$-\dfrac{1}{2}$=$-\dfrac{1}{a}$

Thus, a = 2.

Hence, the final answer is a = 2.

Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE