
Given $\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$. Find the value of a.
Answer
609.9k+ views
Hint: We should know about the common trigonometric identities and numeric values to solve this problem.
Complete step-by-step answer:
To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-
$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Further, we should also know the values to following trigonometric angles-
$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$
$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$
Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,
We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-
= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)
= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$
= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$
Now, $\cos $ (-x) = $\cos $(x), Thus, we have,
= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)
Further, $\sin $(90-x) =$\cos $ (x)
Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$
Substituting this value in (A), we get,
= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$
Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.
Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$
=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$
=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$
=$-\dfrac{1}{2}$
According to the question,
$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$
Thus,
$-\dfrac{1}{2}$=$-\dfrac{1}{a}$
Thus, a = 2.
Hence, the final answer is a = 2.
Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.
Complete step-by-step answer:
To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-
$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Further, we should also know the values to following trigonometric angles-
$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$
$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$
Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,
We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-
= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)
= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$
= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$
Now, $\cos $ (-x) = $\cos $(x), Thus, we have,
= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)
Further, $\sin $(90-x) =$\cos $ (x)
Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$
Substituting this value in (A), we get,
= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$
Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.
Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$
=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$
=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$
=$-\dfrac{1}{2}$
According to the question,
$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$
Thus,
$-\dfrac{1}{2}$=$-\dfrac{1}{a}$
Thus, a = 2.
Hence, the final answer is a = 2.
Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

