Answer
Verified
494.7k+ views
Hint: We should know about the common trigonometric identities and numeric values to solve this problem.
Complete step-by-step answer:
To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-
$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Further, we should also know the values to following trigonometric angles-
$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$
$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$
Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,
We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-
= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)
= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$
= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$
Now, $\cos $ (-x) = $\cos $(x), Thus, we have,
= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)
Further, $\sin $(90-x) =$\cos $ (x)
Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$
Substituting this value in (A), we get,
= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$
Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.
Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$
=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$
=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$
=$-\dfrac{1}{2}$
According to the question,
$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$
Thus,
$-\dfrac{1}{2}$=$-\dfrac{1}{a}$
Thus, a = 2.
Hence, the final answer is a = 2.
Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.
Complete step-by-step answer:
To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-
$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Further, we should also know the values to following trigonometric angles-
$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$
$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$
Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,
We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-
= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)
= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$
= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$
Now, $\cos $ (-x) = $\cos $(x), Thus, we have,
= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)
Further, $\sin $(90-x) =$\cos $ (x)
Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$
Substituting this value in (A), we get,
= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$
Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.
Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$
=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$
=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$
=$-\dfrac{1}{2}$
According to the question,
$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$
Thus,
$-\dfrac{1}{2}$=$-\dfrac{1}{a}$
Thus, a = 2.
Hence, the final answer is a = 2.
Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it