# Given $\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$. Find the value of a.

Answer

Verified

382.5k+ views

Hint: We should know about the common trigonometric identities and numeric values to solve this problem.

Complete step-by-step answer:

To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-

$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$

Further, we should also know the values to following trigonometric angles-

$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$

$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$

Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,

We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-

= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)

= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$

= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$

Now, $\cos $ (-x) = $\cos $(x), Thus, we have,

= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)

Further, $\sin $(90-x) =$\cos $ (x)

Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$

Substituting this value in (A), we get,

= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$

Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.

Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$

=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$

=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$

=$-\dfrac{1}{2}$

According to the question,

$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$

Thus,

$-\dfrac{1}{2}$=$-\dfrac{1}{a}$

Thus, a = 2.

Hence, the final answer is a = 2.

Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.

Complete step-by-step answer:

To solve the above question, we can see that there are four terms containing cosine. Thus, to solve, we will group these four terms in pairs of two and then use the below property on each of the pairs to solve the problem-

$\cos A+\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$

Further, we should also know the values to following trigonometric angles-

$\sin $${{18}^{o}}$ = $\dfrac{\sqrt{5}-1}{4}$

$\cos $${{36}^{o}}$= $\dfrac{\sqrt{5}+1}{4}$

Now, to begin the question, we need to decide which terms to club together to solve the problem efficiently. To explain this,

We can club ($\cos $${{12}^{o}}$ and $\cos $${{84}^{o}}$) and ($\cos $${{156}^{o}}$ and $\cos $${{132}^{o}}$) pair of terms together or any other pairs. However, solving any two random pair of terms may not lead to desirable results. In this case, we group ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$) and ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$) together. The reason behind this is that after solving, we would get the angles in familiar terms. This would be more clear as solve this question below-

= ($\cos $ ${{12}^{o}}$ and $\cos $${{132}^{o}}$)+ ($\cos $${{84}^{o}}$ and $\cos $${{156}^{o}}$)

= 2$\cos $$\dfrac{{{12}^{o}}+{{132}^{o}}}{2}$$\cos $$\dfrac{{{12}^{o}}-{{132}^{o}}}{2}$ + 2$\cos $$\dfrac{{{84}^{o}}+{{156}^{o}}}{2}$$\cos $$\dfrac{{{84}^{o}}-{{156}^{o}}}{2}$

= 2 $\cos $${{72}^{o}}$$\cos $$(-{{60}^{o}})$+2 $\cos $${{120}^{o}}$$\cos $$(-{{36}^{o}})$

Now, $\cos $ (-x) = $\cos $(x), Thus, we have,

= 2 $\cos $${{72}^{o}}$$\cos $${{60}^{o}}$+2 $\cos $${{120}^{o}}$$\cos $${{36}^{o}}$ -- (A)

Further, $\sin $(90-x) =$\cos $ (x)

Thus, $\cos $${{72}^{o}}$=$\sin $${{(90-72)}^{o}}$= $\sin $${{18}^{o}}$

Substituting this value in (A), we get,

= 2$\sin $${{18}^{o}}$$\cos $${{60}^{o}}$+2$\cos $${{120}^{o}}$$\cos $${{36}^{o}}$

Thus, we were able to get familiar terms by clubbing (cos ${{12}^{o}}$ and cos${{132}^{o}}$) and (cos${{84}^{o}}$ and cos${{156}^{o}}$) together since, we know the numeric values of all these sine and cosine values.

Now using the values of $\sin $${{18}^{o}}$, $\cos $${{36}^{o}}$, $\cos $${{60}^{o}}$and $\cos $${{120}^{o}}$

=$\left( 2\times \dfrac{\sqrt{5}-1}{4}\times \dfrac{1}{2} \right)+\left( 2\times \dfrac{-1}{2}\times \dfrac{\sqrt{5}+1}{4} \right)$

=$\left( \dfrac{\sqrt{5}-1}{4} \right)-\left( \dfrac{\sqrt{5}+1}{4} \right)$

=$-\dfrac{1}{2}$

According to the question,

$\cos {{12}^{o}}+\cos {{84}^{o}}+\cos {{156}^{o}}+\cos {{132}^{o}}=-\dfrac{1}{a}$

Thus,

$-\dfrac{1}{2}$=$-\dfrac{1}{a}$

Thus, a = 2.

Hence, the final answer is a = 2.

Note: While solving trigonometric expressions, it is always important to know the numeric values of sine and cosine of following angles- ${{0}^{o}},{{18}^{o}},{{30}^{o}},{{36}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}}$. While solving, we can also group different terms to solve the question. Although the final answer would be the same, it would be more difficult to arrive at the final answer since we would have to manipulate the terms more to get the same answer.

Recently Updated Pages

Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts

Which one of the following places is unlikely to be class 8 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference Between Plant Cell and Animal Cell

Find the HCF and LCM of 6 72 and 120 using the prime class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers