Given, 16 gm of an ideal gas $S{{O}_{x}}$ occupies 5.6L at STP. The value of x is:
(A).x=3
(B).x=2
(C).x=4
(D).none
Answer
Verified
452.1k+ views
Hint: The ideal gas law also known as the general gas equation, which is the equation of the state of the hypothetical ideal gas. Ideal gas is the good approximation of the behavior of many gases under many conditions although there are several limitations.
Complete answer:
The ideal gas law states that the product of the pressure and the volume of a one-gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.
Given in the question:
Mass of ideal gas = 16g
STP is standard temperature and pressure, the volume at STP will be = 22.4 L
Given volume of the ideal gas = 6.6 L
We can calculate the number of moles by the ratio of given volume of gas at standard temperature and pressure to the volume of gas at standard temperature and pressure
Number of moles = $\dfrac{5.6}{22.4}$mole
The molecular weight of the gas will be equal to the ratio of mass of gas to the number of moles of gas
Molecular weight of the gas = $\dfrac{\left( 16 \right)\left( 22.4 \right)}{5.6}$= 64 g
\[32+16x=\]64 g
The value of x = 2.
Hence the correct answer is option (B) and the gas is $S{{O}_{2}}$.
Note:
An ideal gas is gas which obeys the Charles law, Boyle’s law and the avogadro's law. The ideal gas law fails at the lower temperature and high pressure. It almost fails to obey the heavy gases such as the refrigerants.
Complete answer:
The ideal gas law states that the product of the pressure and the volume of a one-gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.
Given in the question:
Mass of ideal gas = 16g
STP is standard temperature and pressure, the volume at STP will be = 22.4 L
Given volume of the ideal gas = 6.6 L
We can calculate the number of moles by the ratio of given volume of gas at standard temperature and pressure to the volume of gas at standard temperature and pressure
Number of moles = $\dfrac{5.6}{22.4}$mole
The molecular weight of the gas will be equal to the ratio of mass of gas to the number of moles of gas
Molecular weight of the gas = $\dfrac{\left( 16 \right)\left( 22.4 \right)}{5.6}$= 64 g
\[32+16x=\]64 g
The value of x = 2.
Hence the correct answer is option (B) and the gas is $S{{O}_{2}}$.
Note:
An ideal gas is gas which obeys the Charles law, Boyle’s law and the avogadro's law. The ideal gas law fails at the lower temperature and high pressure. It almost fails to obey the heavy gases such as the refrigerants.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE