Answer
Verified
468.3k+ views
Hint: Use the conditions for surjectivity for taking the right examples.
Complete step-by-step answer:
Consider examples of \[f\left( x \right)=x+1\]and \[g\left( x \right)=\left\{ \begin{matrix}
x-1,x>1 \\
1,x=1 \\
\end{matrix} \right.\].
First prove that f is not onto by proving the digit formed is not a natural number. As mentioned in \[f:N\to N\]. Then prove gof is onto. Find the composite of g and f\[\Rightarrow \left( gof \right)\left( x \right)=g\left( f\left( x \right) \right)\]. Thus prove gof is onto.
Given to us two functions of \[f:N\to N\]and \[g:N\to N\].
We need to prove that gof is onto and f is not onto.
Onto function could be explained by considering two sets, set A and set B which consist of elements. If for every element of B there is at least one or more than one element matching with A, then the function is said to be onto.
Let us consider \[f:N\to N\]be \[f\left( x \right)=x+1\].
And \[g:N\to N\]be taken as \[g\left( x \right)=\left\{ \begin{matrix}
x-1,x>1 \\
1,x=1 \\
\end{matrix} \right.\].
We will first show that f is not onto.
Let \[f:N\to N\]be \[f\left( x \right)=x+1\]
Let us consider\[y=f\left( x \right)\], where \[y\in N\].
\[\begin{align}
& f\left( x \right)=x+1\Rightarrow y=x+1 \\
& \therefore x=y-1 \\
\end{align}\]
Let us put \[y=1\],
\[x=1-1=0\]
We get x = 0, which is not a natural number.
It is said that \[f:N\to N\]i.e. natural numbers.
But zero is not a natural number. So f is not onto and it doesn’t belong in the elements of natural numbers.
If given functions f and g with domains and target sets consisting sets consisting of real numbers, the composite of g and f is the new function gof defined as,
\[\left( gof \right)\left( x \right)=g\left( f\left( x \right) \right)\]
Here, we need to find gof.
Let us consider \[f\left( x \right)=x+1\]and \[g\left( x \right)=\left\{ \begin{matrix}
x-1,x>1 \\
1,x=1 \\
\end{matrix} \right.\].
\[f\left( x \right)=x+1,g\left( x \right)=1\]
Since, \[g\left( x \right)=1\], for x = 1.
\[\begin{align}
& g\left( f\left( x \right) \right)=1 \\
& \therefore gof=1 \\
\end{align}\]
Since, \[g\left( x \right)=x-1,x>1\]
\[g\left( f\left( x \right) \right)=f\left( x \right)-1\], put, \[x=f\left( x \right)\].
\[\begin{align}
& gof=\left( x+1 \right)-1 \\
& \Rightarrow gof=x \\
& \therefore gof=\left\{ \begin{matrix}
x,x>1 \\
1,x=1 \\
\end{matrix} \right. \\
\end{align}\]
Let us consider, \[gof=y\], where \[y\in N\].
\[\therefore y=\left\{ \begin{matrix}
x,x>1 \\
1,x=1 \\
\end{matrix} \right.\]
Here, y is a natural number, as y = x.
So, x is also a natural number.
\[\therefore \]gof is onto, as y is a natural number and y = gof.
Hence, we proved that gof is onto and f is not onto.
Note: Remember what is onto function. We can only prove a function is not onto, if the elements found don’t belong to it. In the case of \[f:N\to N\], the element was zero, which is not a natural number and doesn’t belong to f. If it was any number greater than zero, then it would belong to \[f:N\to N\]and f would be an onto function.
Complete step-by-step answer:
Consider examples of \[f\left( x \right)=x+1\]and \[g\left( x \right)=\left\{ \begin{matrix}
x-1,x>1 \\
1,x=1 \\
\end{matrix} \right.\].
First prove that f is not onto by proving the digit formed is not a natural number. As mentioned in \[f:N\to N\]. Then prove gof is onto. Find the composite of g and f\[\Rightarrow \left( gof \right)\left( x \right)=g\left( f\left( x \right) \right)\]. Thus prove gof is onto.
Given to us two functions of \[f:N\to N\]and \[g:N\to N\].
We need to prove that gof is onto and f is not onto.
Onto function could be explained by considering two sets, set A and set B which consist of elements. If for every element of B there is at least one or more than one element matching with A, then the function is said to be onto.
Let us consider \[f:N\to N\]be \[f\left( x \right)=x+1\].
And \[g:N\to N\]be taken as \[g\left( x \right)=\left\{ \begin{matrix}
x-1,x>1 \\
1,x=1 \\
\end{matrix} \right.\].
We will first show that f is not onto.
Let \[f:N\to N\]be \[f\left( x \right)=x+1\]
Let us consider\[y=f\left( x \right)\], where \[y\in N\].
\[\begin{align}
& f\left( x \right)=x+1\Rightarrow y=x+1 \\
& \therefore x=y-1 \\
\end{align}\]
Let us put \[y=1\],
\[x=1-1=0\]
We get x = 0, which is not a natural number.
It is said that \[f:N\to N\]i.e. natural numbers.
But zero is not a natural number. So f is not onto and it doesn’t belong in the elements of natural numbers.
If given functions f and g with domains and target sets consisting sets consisting of real numbers, the composite of g and f is the new function gof defined as,
\[\left( gof \right)\left( x \right)=g\left( f\left( x \right) \right)\]
Here, we need to find gof.
Let us consider \[f\left( x \right)=x+1\]and \[g\left( x \right)=\left\{ \begin{matrix}
x-1,x>1 \\
1,x=1 \\
\end{matrix} \right.\].
\[f\left( x \right)=x+1,g\left( x \right)=1\]
Since, \[g\left( x \right)=1\], for x = 1.
\[\begin{align}
& g\left( f\left( x \right) \right)=1 \\
& \therefore gof=1 \\
\end{align}\]
Since, \[g\left( x \right)=x-1,x>1\]
\[g\left( f\left( x \right) \right)=f\left( x \right)-1\], put, \[x=f\left( x \right)\].
\[\begin{align}
& gof=\left( x+1 \right)-1 \\
& \Rightarrow gof=x \\
& \therefore gof=\left\{ \begin{matrix}
x,x>1 \\
1,x=1 \\
\end{matrix} \right. \\
\end{align}\]
Let us consider, \[gof=y\], where \[y\in N\].
\[\therefore y=\left\{ \begin{matrix}
x,x>1 \\
1,x=1 \\
\end{matrix} \right.\]
Here, y is a natural number, as y = x.
So, x is also a natural number.
\[\therefore \]gof is onto, as y is a natural number and y = gof.
Hence, we proved that gof is onto and f is not onto.
Note: Remember what is onto function. We can only prove a function is not onto, if the elements found don’t belong to it. In the case of \[f:N\to N\], the element was zero, which is not a natural number and doesn’t belong to f. If it was any number greater than zero, then it would belong to \[f:N\to N\]and f would be an onto function.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE