
Give examples of polynomials p(x),g(x), q(x) and r(x), which satisfy the division algorithm and
(i)deg p(x)=deg q(x)
(ii)deq q(x)=deq r(x)
(iii)deg r(x)=0
Answer
578.1k+ views
Hint: Assume the values of p(x) and g(x) such that condition (i), (ii) and (iii) are satisfied and use the formula of division algorithm-
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Complete step-by-step answer:
Here let us represent, p(x) =dividend=the number to be divided
g(x)=Divisor=the number by which dividend is divided
q(x)=quotient
And r(x)=remainder
Now we have to give examples of polynomials such that the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Is satisfies and the given conditions are also satisfied
(i)Let us assume the division of $2x + 4$ by $2$
Then p(x) =$2x + 4$
g(x)= $2$
q(x)=$x + 2$
and r(x)=$0$
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow 2x + 4 = 2 \times \left( {x + 2} \right) + 0$
On solving we get,
$ \Rightarrow 2x + 4 = 2x + 4$
Hence the division algorithm is satisfied.
And here the degree of p(x) =$1$ =degree of q(x)
Hence (i) condition is also satisfied.
(ii) Let us assume the division of ${x^3} + x$ by${x^2}$
Then here, p(x) =${x^3} + x$
g(x)= ${x^2}$
q(x)=$x$
r(x)=$x$
It is clear that the degree of q(x)=1 and
Degree of r(x)=1
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^3} + x = \left( {{x^2} \times x} \right) + x$
On solving we get,
$ \Rightarrow {x^3} + x = {x^3} + x$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$1$ =degree of q(x)
Hence (ii) condition is also satisfied.
(iii)Let us assume the division of ${x^2} + 1$ by$x$
Then here, p(x) =${x^2} + 1$
g(x)= $x$
q(x)=$x$
r(x)=$1$
It is clear that the degree of r(x) =$0$ and
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^2} + 1 = \left( {x \times x} \right) + 1$
On solving we get,
$ \Rightarrow {x^2} + 1 = {x^2} + 1$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$0$
Hence (iii) condition is also satisfied.
Note: Here you can also assume any other polynomial for division but it is necessary that the chosen dividend and divisor be such that the conditions of the questions are satisfied.
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Complete step-by-step answer:
Here let us represent, p(x) =dividend=the number to be divided
g(x)=Divisor=the number by which dividend is divided
q(x)=quotient
And r(x)=remainder
Now we have to give examples of polynomials such that the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Is satisfies and the given conditions are also satisfied
(i)Let us assume the division of $2x + 4$ by $2$
Then p(x) =$2x + 4$
g(x)= $2$
q(x)=$x + 2$
and r(x)=$0$
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow 2x + 4 = 2 \times \left( {x + 2} \right) + 0$
On solving we get,
$ \Rightarrow 2x + 4 = 2x + 4$
Hence the division algorithm is satisfied.
And here the degree of p(x) =$1$ =degree of q(x)
Hence (i) condition is also satisfied.
(ii) Let us assume the division of ${x^3} + x$ by${x^2}$
Then here, p(x) =${x^3} + x$
g(x)= ${x^2}$
q(x)=$x$
r(x)=$x$
It is clear that the degree of q(x)=1 and
Degree of r(x)=1
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^3} + x = \left( {{x^2} \times x} \right) + x$
On solving we get,
$ \Rightarrow {x^3} + x = {x^3} + x$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$1$ =degree of q(x)
Hence (ii) condition is also satisfied.
(iii)Let us assume the division of ${x^2} + 1$ by$x$
Then here, p(x) =${x^2} + 1$
g(x)= $x$
q(x)=$x$
r(x)=$1$
It is clear that the degree of r(x) =$0$ and
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^2} + 1 = \left( {x \times x} \right) + 1$
On solving we get,
$ \Rightarrow {x^2} + 1 = {x^2} + 1$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$0$
Hence (iii) condition is also satisfied.
Note: Here you can also assume any other polynomial for division but it is necessary that the chosen dividend and divisor be such that the conditions of the questions are satisfied.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

