
Give examples of polynomials p(x),g(x), q(x) and r(x), which satisfy the division algorithm and
(i)deg p(x)=deg q(x)
(ii)deq q(x)=deq r(x)
(iii)deg r(x)=0
Answer
486.9k+ views
Hint: Assume the values of p(x) and g(x) such that condition (i), (ii) and (iii) are satisfied and use the formula of division algorithm-
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Complete step-by-step answer:
Here let us represent, p(x) =dividend=the number to be divided
g(x)=Divisor=the number by which dividend is divided
q(x)=quotient
And r(x)=remainder
Now we have to give examples of polynomials such that the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Is satisfies and the given conditions are also satisfied
(i)Let us assume the division of $2x + 4$ by $2$
Then p(x) =$2x + 4$
g(x)= $2$
q(x)=$x + 2$
and r(x)=$0$
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow 2x + 4 = 2 \times \left( {x + 2} \right) + 0$
On solving we get,
$ \Rightarrow 2x + 4 = 2x + 4$
Hence the division algorithm is satisfied.
And here the degree of p(x) =$1$ =degree of q(x)
Hence (i) condition is also satisfied.
(ii) Let us assume the division of ${x^3} + x$ by${x^2}$
Then here, p(x) =${x^3} + x$
g(x)= ${x^2}$
q(x)=$x$
r(x)=$x$
It is clear that the degree of q(x)=1 and
Degree of r(x)=1
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^3} + x = \left( {{x^2} \times x} \right) + x$
On solving we get,
$ \Rightarrow {x^3} + x = {x^3} + x$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$1$ =degree of q(x)
Hence (ii) condition is also satisfied.
(iii)Let us assume the division of ${x^2} + 1$ by$x$
Then here, p(x) =${x^2} + 1$
g(x)= $x$
q(x)=$x$
r(x)=$1$
It is clear that the degree of r(x) =$0$ and
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^2} + 1 = \left( {x \times x} \right) + 1$
On solving we get,
$ \Rightarrow {x^2} + 1 = {x^2} + 1$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$0$
Hence (iii) condition is also satisfied.
Note: Here you can also assume any other polynomial for division but it is necessary that the chosen dividend and divisor be such that the conditions of the questions are satisfied.
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Complete step-by-step answer:
Here let us represent, p(x) =dividend=the number to be divided
g(x)=Divisor=the number by which dividend is divided
q(x)=quotient
And r(x)=remainder
Now we have to give examples of polynomials such that the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
Is satisfies and the given conditions are also satisfied
(i)Let us assume the division of $2x + 4$ by $2$
Then p(x) =$2x + 4$
g(x)= $2$
q(x)=$x + 2$
and r(x)=$0$
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow 2x + 4 = 2 \times \left( {x + 2} \right) + 0$
On solving we get,
$ \Rightarrow 2x + 4 = 2x + 4$
Hence the division algorithm is satisfied.
And here the degree of p(x) =$1$ =degree of q(x)
Hence (i) condition is also satisfied.
(ii) Let us assume the division of ${x^3} + x$ by${x^2}$
Then here, p(x) =${x^3} + x$
g(x)= ${x^2}$
q(x)=$x$
r(x)=$x$
It is clear that the degree of q(x)=1 and
Degree of r(x)=1
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^3} + x = \left( {{x^2} \times x} \right) + x$
On solving we get,
$ \Rightarrow {x^3} + x = {x^3} + x$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$1$ =degree of q(x)
Hence (ii) condition is also satisfied.
(iii)Let us assume the division of ${x^2} + 1$ by$x$
Then here, p(x) =${x^2} + 1$
g(x)= $x$
q(x)=$x$
r(x)=$1$
It is clear that the degree of r(x) =$0$ and
On using the division algorithm
\[ \Rightarrow \] Dividend=Divisor × Quotient +Remainder
$ \Rightarrow $ p(x)=g(x) × q(x) +r(x)
On putting the given values we get,
$ \Rightarrow {x^2} + 1 = \left( {x \times x} \right) + 1$
On solving we get,
$ \Rightarrow {x^2} + 1 = {x^2} + 1$
Hence the division algorithm is satisfied.
And here the degree of r(x) =$0$
Hence (iii) condition is also satisfied.
Note: Here you can also assume any other polynomial for division but it is necessary that the chosen dividend and divisor be such that the conditions of the questions are satisfied.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
For Frost what do fire and ice stand for Here are some class 10 english CBSE

What did the military generals do How did their attitude class 10 english CBSE

What did being free mean to Mandela as a boy and as class 10 english CBSE

What did Valli find about the bus journey How did she class 10 english CBSE

Can you say how 10th May is an Autumn day in South class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
