
Give an example of ion with minimum internuclear distance?
Answer
504.6k+ views
Hint: As we know that bond order is the difference of number of bonding electrons and antibonding electrons which is divided by two. The distance between two nuclei of a molecule is termed as internuclear distance which is inversely proportional to bond order. So here we have to give an example of an ion with minimum internuclear distance.
Formula used:
We will use the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Complete answer:
-Let us first understand the concept of bond order and internuclear distance followed by giving an example of ion with minimum internuclear distance:-
-Bond order can be defined as the number of bonds or electron pairs between two atoms and it is the difference between the number of bonding electrons and antibonding electrons which is divided by two. Bond order can be calculated by using the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
-The number of bonding electrons and antibonding electrons can be counted by writing down the molecular orbital configuration according to their increasing order of energy shown as follows:-
$\sigma 1s,{{\sigma }^{*}}1s,\sigma 2s,{{\sigma }^{*}}2s,\sigma 2{{p}_{z}},\pi 2{{p}_{x}}=\pi 2{{p}_{y}},{{\pi }^{*}}2{{p}_{x}}={{\pi }^{*}}2{{p}_{y}},{{\sigma }^{*}}2{{p}_{z}}$ and so on.
Here molecular orbitals with asterisk $(*)$ are anti bonding molecular orbital, so its electrons will be counted as antibonding electrons and rest as bonding electrons.
-Internuclear distance is the distance between two nuclei of a molecule and it is inversely proportional to bond order. This means greater the bond order, less will be the internuclear distance due to more number of bonds or electron pairs between the two nuclei of a molecule.
-An example of ion with minimum internuclear distance is as follows:-
Let's take the case of the oxygen molecule. The total electrons in ${{O}_{2}}$ is 16. So the molecular orbital configuration of oxygen molecule and its ions are shown below:-
i) ${{O}_{2}}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 6
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-6)$ = 2
ii)${{O}_{2}}^{-}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{2}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 7
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-7)$ = 1.5
iii)${{O}_{2}}^{+}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 5
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-5)$ = 2.5
-Since the bond order of ${{O}_{2}}^{+}$ is the highest, therefore its internuclear distance will be minimum.
Note:
-Remember that bond order is always positive and can be an integer or fraction.
-The molecule whose bond order is calculated to be zero does not exist because there is no electron pair in the molecule.
Formula used:
We will use the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Complete answer:
-Let us first understand the concept of bond order and internuclear distance followed by giving an example of ion with minimum internuclear distance:-
-Bond order can be defined as the number of bonds or electron pairs between two atoms and it is the difference between the number of bonding electrons and antibonding electrons which is divided by two. Bond order can be calculated by using the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
-The number of bonding electrons and antibonding electrons can be counted by writing down the molecular orbital configuration according to their increasing order of energy shown as follows:-
$\sigma 1s,{{\sigma }^{*}}1s,\sigma 2s,{{\sigma }^{*}}2s,\sigma 2{{p}_{z}},\pi 2{{p}_{x}}=\pi 2{{p}_{y}},{{\pi }^{*}}2{{p}_{x}}={{\pi }^{*}}2{{p}_{y}},{{\sigma }^{*}}2{{p}_{z}}$ and so on.
Here molecular orbitals with asterisk $(*)$ are anti bonding molecular orbital, so its electrons will be counted as antibonding electrons and rest as bonding electrons.
-Internuclear distance is the distance between two nuclei of a molecule and it is inversely proportional to bond order. This means greater the bond order, less will be the internuclear distance due to more number of bonds or electron pairs between the two nuclei of a molecule.
-An example of ion with minimum internuclear distance is as follows:-
Let's take the case of the oxygen molecule. The total electrons in ${{O}_{2}}$ is 16. So the molecular orbital configuration of oxygen molecule and its ions are shown below:-
i) ${{O}_{2}}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 6
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-6)$ = 2
ii)${{O}_{2}}^{-}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{2}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 7
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-7)$ = 1.5
iii)${{O}_{2}}^{+}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 5
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-5)$ = 2.5
-Since the bond order of ${{O}_{2}}^{+}$ is the highest, therefore its internuclear distance will be minimum.
Note:
-Remember that bond order is always positive and can be an integer or fraction.
-The molecule whose bond order is calculated to be zero does not exist because there is no electron pair in the molecule.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

