What is the general solution of the differential equation: $\left( {y\ln y} \right)dx - xdy = 0?$
Answer
Verified
439.5k+ views
Hint:The given differential equation can be solved by separable method, in which we separate variables and integrate them. Also to integrate one of the integrals use substitution method and then to get an explicit general solution, take both side anti logarithms (or exponential to the power e).
Complete step by step solution:
To find the general solution of the given differential equation: $\left(
{y\ln y} \right)dx - xdy = 0$, we will use a separation method, as we can see this is a type of separable differential equation.
As the differential equation $\left( {y\ln y} \right)dx - xdy = 0$ is a separable differential equation, separating the variables in it as follows
$
\Rightarrow \left( {y\ln y} \right)dx - xdy = 0 \\
\Rightarrow \left( {y\ln y} \right)dx = xdy \\
\Rightarrow \dfrac{{dx}}{x} = \dfrac{{dy}}{{\left( {y\ln y} \right)}} \\
$
We have separated the variables, now integrating both sides, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{{\left( {y\ln y} \right)}}} dy\]
As we can see the left hand integral is trivial but the right hand side integral is unsetting, so we will try a substitution method to simplify it.
Let us take $u = \ln y \Rightarrow du = \dfrac{1}{y}dy$
Substituting this in above integral, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{u}du} \]
Now we can integrate it easily,
\[ \Rightarrow \ln x + c = \ln u\]
Using property of log, we can also write it as
\[
\Rightarrow \ln x + \ln {\text{C}} = \ln u \\
\Rightarrow \ln {\text{C}}x = \ln u \\
\]
After restoring the substitution, we will get
\[ \Rightarrow \ln {\text{C}}x = \ln (\ln y)\]
Now taking exponential to base e, both sides, we will get
\[
\Rightarrow {e^{\ln {\text{C}}x}} = {e^{\ln (\ln y)}} \\
\Rightarrow {\text{C}}x = \ln y \\
\]
Again taking exponential to base e, we will get
\[
\Rightarrow {e^{{\text{C}}x}} = {e^{\ln y}} \\
\Rightarrow {e^{{\text{C}}x}} = y \\
\Rightarrow y = {e^{{\text{C}}x}} \\
\]
So \[y = {e^{{\text{C}}x}}\] is the general solution for the differential equation $\left( {y\ln y} \right)dx - xdy = 0$
Note: We have calculated the explicit general solution in this problem. Explicit solutions consist of dependent variables at the left hand side with power one and every other terms on the right hand side, whereas every solution which is not explicit is an implicit solution.
Complete step by step solution:
To find the general solution of the given differential equation: $\left(
{y\ln y} \right)dx - xdy = 0$, we will use a separation method, as we can see this is a type of separable differential equation.
As the differential equation $\left( {y\ln y} \right)dx - xdy = 0$ is a separable differential equation, separating the variables in it as follows
$
\Rightarrow \left( {y\ln y} \right)dx - xdy = 0 \\
\Rightarrow \left( {y\ln y} \right)dx = xdy \\
\Rightarrow \dfrac{{dx}}{x} = \dfrac{{dy}}{{\left( {y\ln y} \right)}} \\
$
We have separated the variables, now integrating both sides, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{{\left( {y\ln y} \right)}}} dy\]
As we can see the left hand integral is trivial but the right hand side integral is unsetting, so we will try a substitution method to simplify it.
Let us take $u = \ln y \Rightarrow du = \dfrac{1}{y}dy$
Substituting this in above integral, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{u}du} \]
Now we can integrate it easily,
\[ \Rightarrow \ln x + c = \ln u\]
Using property of log, we can also write it as
\[
\Rightarrow \ln x + \ln {\text{C}} = \ln u \\
\Rightarrow \ln {\text{C}}x = \ln u \\
\]
After restoring the substitution, we will get
\[ \Rightarrow \ln {\text{C}}x = \ln (\ln y)\]
Now taking exponential to base e, both sides, we will get
\[
\Rightarrow {e^{\ln {\text{C}}x}} = {e^{\ln (\ln y)}} \\
\Rightarrow {\text{C}}x = \ln y \\
\]
Again taking exponential to base e, we will get
\[
\Rightarrow {e^{{\text{C}}x}} = {e^{\ln y}} \\
\Rightarrow {e^{{\text{C}}x}} = y \\
\Rightarrow y = {e^{{\text{C}}x}} \\
\]
So \[y = {e^{{\text{C}}x}}\] is the general solution for the differential equation $\left( {y\ln y} \right)dx - xdy = 0$
Note: We have calculated the explicit general solution in this problem. Explicit solutions consist of dependent variables at the left hand side with power one and every other terms on the right hand side, whereas every solution which is not explicit is an implicit solution.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE