
Gaseous${{A}_{2}}$ dissociates as, ${{A}_{2}}(g)\to 2A(g)$. Initial pressure of${{A}_{2}}$ is 0.8atm. After 20 minutes the pressure is 1.1atm. Calculate the rate constant and half-life period for the reaction.
Answer
458.7k+ views
Hint:. The base of this answer lies in the concept of the rate of second order reaction and half life for the second order reaction based on the equilibrium conditions that leads you to the correct answer.
Complete step by step answer:
- We have studied the half life and also determination of rate constant of the reaction on the basis of concentration of the reactants in our classes of physical chemistry.
- Now, let us look into how to calculate the rate constant when pressure is given.
To start with, let us consider the reaction that is taking place that is:
${{A}_{2}}(g)\to 2A(g)$
Here, the initial pressure of the reactant is taken as P and that of the product will be zero because initially no product will be formed.
At the equilibrium the pressure of the product will be 2x
Thus, total pressure will be:
\[{{P}_{t}} = P - x + 2x\]
\[{{P}_{t}} = P + x\] ………..(1)
Now, the initial pressure as per data is 0.8 atm = P
Thus, $P = 0.8 atm$
The final pressure is, ${{P}_{t}} = 1.1 atm$
Now, substituting these values in the equation (1)
\[1.1 = 0.8 + x\]
\[\Rightarrow x = 1.1 - 0.8 = 0.3 atm\]
Thus, rate of a reaction at the time of 20 minutes is given by,
\[-\dfrac{d[{{A}_{2}}]}{dt}=\dfrac{x}{t}=\dfrac{0.3}{20}\]
Thus,$\dfrac{-d[{{A}_{2}}]}{dt}=0.015atm/\min $
Therefore, the rate of a reaction will be k = 0.015 atm / min.
Now, half life of reaction is related to the rate of reaction as,
\[{{T}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{k}\]
where, \[{{T}_{{}^{1}/{}_{2}}}\] is the half life
k is the rate of reaction.
Substituting the rate value, we get
\[{{T}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{0.015}=1.03\times {{10}^{-2}}{{\min }^{-1}}\]
Therefore, the correct answer is rate of a reaction is k = 0.015 atm / min and half life is \[1.03\times {{10}^{-2}}{{\min }^{-1}}\]
Note: Note that while calculating the rate of a reaction in terms of concentration of the reactants, observe about which order the reaction is, that is whether first order or second because the formula of rate constant varies for each order of reaction.
Complete step by step answer:
- We have studied the half life and also determination of rate constant of the reaction on the basis of concentration of the reactants in our classes of physical chemistry.
- Now, let us look into how to calculate the rate constant when pressure is given.
To start with, let us consider the reaction that is taking place that is:
${{A}_{2}}(g)\to 2A(g)$
Initial | P | 0 |
At equilibrium | P - x | 2x |
Here, the initial pressure of the reactant is taken as P and that of the product will be zero because initially no product will be formed.
At the equilibrium the pressure of the product will be 2x
Thus, total pressure will be:
\[{{P}_{t}} = P - x + 2x\]
\[{{P}_{t}} = P + x\] ………..(1)
Now, the initial pressure as per data is 0.8 atm = P
Thus, $P = 0.8 atm$
The final pressure is, ${{P}_{t}} = 1.1 atm$
Now, substituting these values in the equation (1)
\[1.1 = 0.8 + x\]
\[\Rightarrow x = 1.1 - 0.8 = 0.3 atm\]
Thus, rate of a reaction at the time of 20 minutes is given by,
\[-\dfrac{d[{{A}_{2}}]}{dt}=\dfrac{x}{t}=\dfrac{0.3}{20}\]
Thus,$\dfrac{-d[{{A}_{2}}]}{dt}=0.015atm/\min $
Therefore, the rate of a reaction will be k = 0.015 atm / min.
Now, half life of reaction is related to the rate of reaction as,
\[{{T}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{k}\]
where, \[{{T}_{{}^{1}/{}_{2}}}\] is the half life
k is the rate of reaction.
Substituting the rate value, we get
\[{{T}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{0.015}=1.03\times {{10}^{-2}}{{\min }^{-1}}\]
Therefore, the correct answer is rate of a reaction is k = 0.015 atm / min and half life is \[1.03\times {{10}^{-2}}{{\min }^{-1}}\]
Note: Note that while calculating the rate of a reaction in terms of concentration of the reactants, observe about which order the reaction is, that is whether first order or second because the formula of rate constant varies for each order of reaction.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Find the image of the point 38 about the line x+3y class 11 maths CBSE

Can anyone list 10 advantages and disadvantages of friction

Distinguish between Mitosis and Meiosis class 11 biology CBSE
