Answer

Verified

424.5k+ views

Hint: In this question first removed from a pack of 52 playing cards jacks, queens, kings and aces of red color, then calculated the remaining cards which is the total outcomes, then find out the favorable outcomes for all different cases, then apply the formula of probability, so use these concepts to reach the solution of the question.

Complete step-by-step answer:

In a deck of 52 cards we have 2 red queens, 2 red jacks, 2 red kings, 2 red aces one of hearts and one of diamond and we have removed them both so the total cards removed are

$\left( {2 + 2 + 2 + 2} \right) = 8$

So, the remaining cards are $\left( {52 - 8} \right) = 44$.

Therefore total outcomes $ = 44$

$\left( i \right)$ A black queen

In the remaining cards there are only 2 black queens, one of spade and one of club.

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.

$\left( {ii} \right)$ A red card

As we know that in a pack of 52 cards there are 4 houses having 13 cards each. (Spade, heart, diamond and club)

Therefore the total number of red cards is $\left( {13 + 13} \right) = 26$ (heart and diamond).

But we have removed 8 red cards, so the total number of red cards remaining are $\left( {26 - 8 = 18} \right)$.

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{18}}{{44}} = \dfrac{9}{{22}}$.

$\left( {iii} \right)$ A black jack

In the remaining cards there are only 2 black jacks, one of spade and one of club.

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.

$\left( {iv} \right)$ A picture card

As we know in a pack of 52 cards (Jacks, kings and queens are picture cards), so, there are 4 jacks, 4 kings and 4 queens in a pack of 52 cards.

So the total picture card becomes $\left( {4 + 4 + 4 = 12} \right)$, but we have removed (2 red queen, 2 red jacks and 2 red kings) from a pack of cards .

Therefore total picture cards $\left( {12 - \left( {2 + 2 + 2} \right) = 12 - 6 = 6} \right)$

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{6}{{44}} = \dfrac{3}{{22}}$.

So, these are the required probabilities.

Note: Solving such probability questions simply requires understanding of what is being removed and how many cards are being left behind as the total sample cases is affected by this concept. Always remember there are only 3 face cards in each house and not 4 as ace is not a face card. We need to remember that there are in total 4 houses that are heart, diamond, and spade and club having13 cards in each of them.

Complete step-by-step answer:

In a deck of 52 cards we have 2 red queens, 2 red jacks, 2 red kings, 2 red aces one of hearts and one of diamond and we have removed them both so the total cards removed are

$\left( {2 + 2 + 2 + 2} \right) = 8$

So, the remaining cards are $\left( {52 - 8} \right) = 44$.

Therefore total outcomes $ = 44$

$\left( i \right)$ A black queen

In the remaining cards there are only 2 black queens, one of spade and one of club.

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.

$\left( {ii} \right)$ A red card

As we know that in a pack of 52 cards there are 4 houses having 13 cards each. (Spade, heart, diamond and club)

Therefore the total number of red cards is $\left( {13 + 13} \right) = 26$ (heart and diamond).

But we have removed 8 red cards, so the total number of red cards remaining are $\left( {26 - 8 = 18} \right)$.

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{18}}{{44}} = \dfrac{9}{{22}}$.

$\left( {iii} \right)$ A black jack

In the remaining cards there are only 2 black jacks, one of spade and one of club.

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.

$\left( {iv} \right)$ A picture card

As we know in a pack of 52 cards (Jacks, kings and queens are picture cards), so, there are 4 jacks, 4 kings and 4 queens in a pack of 52 cards.

So the total picture card becomes $\left( {4 + 4 + 4 = 12} \right)$, but we have removed (2 red queen, 2 red jacks and 2 red kings) from a pack of cards .

Therefore total picture cards $\left( {12 - \left( {2 + 2 + 2} \right) = 12 - 6 = 6} \right)$

So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{6}{{44}} = \dfrac{3}{{22}}$.

So, these are the required probabilities.

Note: Solving such probability questions simply requires understanding of what is being removed and how many cards are being left behind as the total sample cases is affected by this concept. Always remember there are only 3 face cards in each house and not 4 as ace is not a face card. We need to remember that there are in total 4 houses that are heart, diamond, and spade and club having13 cards in each of them.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Mule is a offspring of A Cross breeding B Interspecific class 11 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE