From a pack of 52 playing cards jacks, queens, kings and aces of red color are removed. From the remaining, a card is drawn at random, find the probability that the card is
$\left( i \right)$ A black queen $\left( {ii} \right)$ A red card $\left( {iii} \right)$ A black jack $\left( {iv} \right)$ A picture card
(Jacks, kings and queen are picture cards)
Answer
328.5k+ views
Hint: In this question first removed from a pack of 52 playing cards jacks, queens, kings and aces of red color, then calculated the remaining cards which is the total outcomes, then find out the favorable outcomes for all different cases, then apply the formula of probability, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
In a deck of 52 cards we have 2 red queens, 2 red jacks, 2 red kings, 2 red aces one of hearts and one of diamond and we have removed them both so the total cards removed are
$\left( {2 + 2 + 2 + 2} \right) = 8$
So, the remaining cards are $\left( {52 - 8} \right) = 44$.
Therefore total outcomes $ = 44$
$\left( i \right)$ A black queen
In the remaining cards there are only 2 black queens, one of spade and one of club.
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.
$\left( {ii} \right)$ A red card
As we know that in a pack of 52 cards there are 4 houses having 13 cards each. (Spade, heart, diamond and club)
Therefore the total number of red cards is $\left( {13 + 13} \right) = 26$ (heart and diamond).
But we have removed 8 red cards, so the total number of red cards remaining are $\left( {26 - 8 = 18} \right)$.
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{18}}{{44}} = \dfrac{9}{{22}}$.
$\left( {iii} \right)$ A black jack
In the remaining cards there are only 2 black jacks, one of spade and one of club.
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.
$\left( {iv} \right)$ A picture card
As we know in a pack of 52 cards (Jacks, kings and queens are picture cards), so, there are 4 jacks, 4 kings and 4 queens in a pack of 52 cards.
So the total picture card becomes $\left( {4 + 4 + 4 = 12} \right)$, but we have removed (2 red queen, 2 red jacks and 2 red kings) from a pack of cards .
Therefore total picture cards $\left( {12 - \left( {2 + 2 + 2} \right) = 12 - 6 = 6} \right)$
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{6}{{44}} = \dfrac{3}{{22}}$.
So, these are the required probabilities.
Note: Solving such probability questions simply requires understanding of what is being removed and how many cards are being left behind as the total sample cases is affected by this concept. Always remember there are only 3 face cards in each house and not 4 as ace is not a face card. We need to remember that there are in total 4 houses that are heart, diamond, and spade and club having13 cards in each of them.
Complete step-by-step answer:
In a deck of 52 cards we have 2 red queens, 2 red jacks, 2 red kings, 2 red aces one of hearts and one of diamond and we have removed them both so the total cards removed are
$\left( {2 + 2 + 2 + 2} \right) = 8$
So, the remaining cards are $\left( {52 - 8} \right) = 44$.
Therefore total outcomes $ = 44$
$\left( i \right)$ A black queen
In the remaining cards there are only 2 black queens, one of spade and one of club.
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.
$\left( {ii} \right)$ A red card
As we know that in a pack of 52 cards there are 4 houses having 13 cards each. (Spade, heart, diamond and club)
Therefore the total number of red cards is $\left( {13 + 13} \right) = 26$ (heart and diamond).
But we have removed 8 red cards, so the total number of red cards remaining are $\left( {26 - 8 = 18} \right)$.
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{18}}{{44}} = \dfrac{9}{{22}}$.
$\left( {iii} \right)$ A black jack
In the remaining cards there are only 2 black jacks, one of spade and one of club.
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{2}{{44}} = \dfrac{1}{{22}}$.
$\left( {iv} \right)$ A picture card
As we know in a pack of 52 cards (Jacks, kings and queens are picture cards), so, there are 4 jacks, 4 kings and 4 queens in a pack of 52 cards.
So the total picture card becomes $\left( {4 + 4 + 4 = 12} \right)$, but we have removed (2 red queen, 2 red jacks and 2 red kings) from a pack of cards .
Therefore total picture cards $\left( {12 - \left( {2 + 2 + 2} \right) = 12 - 6 = 6} \right)$
So, the probability becomes $ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{6}{{44}} = \dfrac{3}{{22}}$.
So, these are the required probabilities.
Note: Solving such probability questions simply requires understanding of what is being removed and how many cards are being left behind as the total sample cases is affected by this concept. Always remember there are only 3 face cards in each house and not 4 as ace is not a face card. We need to remember that there are in total 4 houses that are heart, diamond, and spade and club having13 cards in each of them.
Last updated date: 02nd Jun 2023
•
Total views: 328.5k
•
Views today: 6.84k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
