From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition, including at least 4 boys and 4 girls. The 2 girls who won the prize last year should be included. In how many ways can the selection be made?
Answer
362.1k+ views
Hint: To solve the question, we have to find out the different cases of selection considering the given conditions and use combinations and factorial formula to calculate the number of ways of selecting 10 students for the competition for the different cases analysed.
Complete step-by-step answer:
The number of ways of selecting 10 students chosen for a competition from the 12 boys and 10 girls are selecting 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls.
Since the condition is given that the 10 students chosen for a competition, include at least 4 boys and 4 girls.
The other condition given is that the 10 students chosen for the competition must include the 2 girls who won the prize last year.
The number of ways of the 2 girls can be included in the 10 students chosen for a competition, are these 2 girls included in the group of 4 or 5 or 6 girls among the 10 students chosen for the competition.
The number of ways the selection can be made = Sum of ways of choosing 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls from the 12 boys and 10 girls of a class such that 2 girls are who won the prize last year are include in the team
\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times {}^{2}{{C}_{2}} \right)\]
\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times 1 \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times 1 \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times 1 \right)\]
We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and \[n!=n\left( n-1 \right)\left( n-2 \right).....2\times 1\]
By applying the above formula, we get
\[=\dfrac{12!}{5!\left( 12-5 \right)!}\times \left( \dfrac{8!}{3!\left( 8-3 \right)!} \right)+\dfrac{12!}{6!\left( 12-6 \right)!}\times \left( \dfrac{8!}{2!\left( 8-2 \right)!} \right)+\dfrac{12!}{4!\left( 12-4 \right)!}\times \left( \dfrac{8!}{4!\left( 8-4 \right)!} \right)\]
\[=\dfrac{12!}{5!7!}\times \left( \dfrac{8!}{3!5!} \right)+\dfrac{12!}{6!6!}\times \left( \dfrac{8!}{2!6!} \right)+\dfrac{12!}{4!8!}\times \left( \dfrac{8!}{4!4!} \right)\]
\[\begin{align}
& =\dfrac{12\times 11\times 10\times 9\times 8\times 7!}{5!7!}\times \left( \dfrac{8\times 7\times 6\times 5!}{3!5!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!6!}\times \left( \dfrac{8\times 7\times 6!}{2!6!} \right) \\
& +\dfrac{12\times 11\times 10\times 9\times 8!}{4!8!}\times \left( \dfrac{8\times 7\times 6\times 5\times 4!}{4!4!} \right) \\
\end{align}\]
Since we know that the above formula of \[n!\] can also be written as \[n!=n\left( n-1 \right)\left( n-2 \right)...(n-r)!\]
\[\begin{align}
& =\dfrac{12\times 11\times 10\times 9\times 8}{5!}\times \left( \dfrac{8\times 7\times 6}{3!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6!}\times \left( \dfrac{8\times 7}{2!} \right) \\
& +\dfrac{12\times 11\times 10\times 9}{4!}\times \left( \dfrac{8\times 7\times 6\times 5}{4!} \right) \\
\end{align}\]
\[\begin{align}
& =\dfrac{12\times 11\times 10\times 9\times 8}{5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6}{3\times 2\times 1} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6\times 5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7}{2\times 1} \right) \\
& +\dfrac{12\times 11\times 10\times 9}{4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6\times 5}{4\times 3\times 2\times 1} \right) \\
\end{align}\]
By cancelling the common terms in denominator and numerator we get
\[=\left( 11\times 9\times 8 \right)\times \left( 8\times 7 \right)+\left( 11\times 3\times 4\times 7 \right)\times \left( 4\times 7 \right)+\left( 11\times 5\times 9 \right)\times \left( 5\times 2\times 7 \right)\]
\[=792\times 56+924\times 28+495\times 70\]
= 44352 + 25872 + 34650
= 104874
Thus, the number of ways of selecting 10 students chosen for the competition = 104874
Note: The possibility of mistake can be the calculation mistake since the procedure of solving involves large calculations. Hence be very careful in simplifying and cancelling the terms to get the desired result.
Complete step-by-step answer:
The number of ways of selecting 10 students chosen for a competition from the 12 boys and 10 girls are selecting 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls.
Since the condition is given that the 10 students chosen for a competition, include at least 4 boys and 4 girls.
The other condition given is that the 10 students chosen for the competition must include the 2 girls who won the prize last year.
The number of ways of the 2 girls can be included in the 10 students chosen for a competition, are these 2 girls included in the group of 4 or 5 or 6 girls among the 10 students chosen for the competition.
The number of ways the selection can be made = Sum of ways of choosing 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls from the 12 boys and 10 girls of a class such that 2 girls are who won the prize last year are include in the team
\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times {}^{2}{{C}_{2}} \right)\]
\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times 1 \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times 1 \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times 1 \right)\]
We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and \[n!=n\left( n-1 \right)\left( n-2 \right).....2\times 1\]
By applying the above formula, we get
\[=\dfrac{12!}{5!\left( 12-5 \right)!}\times \left( \dfrac{8!}{3!\left( 8-3 \right)!} \right)+\dfrac{12!}{6!\left( 12-6 \right)!}\times \left( \dfrac{8!}{2!\left( 8-2 \right)!} \right)+\dfrac{12!}{4!\left( 12-4 \right)!}\times \left( \dfrac{8!}{4!\left( 8-4 \right)!} \right)\]
\[=\dfrac{12!}{5!7!}\times \left( \dfrac{8!}{3!5!} \right)+\dfrac{12!}{6!6!}\times \left( \dfrac{8!}{2!6!} \right)+\dfrac{12!}{4!8!}\times \left( \dfrac{8!}{4!4!} \right)\]
\[\begin{align}
& =\dfrac{12\times 11\times 10\times 9\times 8\times 7!}{5!7!}\times \left( \dfrac{8\times 7\times 6\times 5!}{3!5!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!6!}\times \left( \dfrac{8\times 7\times 6!}{2!6!} \right) \\
& +\dfrac{12\times 11\times 10\times 9\times 8!}{4!8!}\times \left( \dfrac{8\times 7\times 6\times 5\times 4!}{4!4!} \right) \\
\end{align}\]
Since we know that the above formula of \[n!\] can also be written as \[n!=n\left( n-1 \right)\left( n-2 \right)...(n-r)!\]
\[\begin{align}
& =\dfrac{12\times 11\times 10\times 9\times 8}{5!}\times \left( \dfrac{8\times 7\times 6}{3!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6!}\times \left( \dfrac{8\times 7}{2!} \right) \\
& +\dfrac{12\times 11\times 10\times 9}{4!}\times \left( \dfrac{8\times 7\times 6\times 5}{4!} \right) \\
\end{align}\]
\[\begin{align}
& =\dfrac{12\times 11\times 10\times 9\times 8}{5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6}{3\times 2\times 1} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6\times 5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7}{2\times 1} \right) \\
& +\dfrac{12\times 11\times 10\times 9}{4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6\times 5}{4\times 3\times 2\times 1} \right) \\
\end{align}\]
By cancelling the common terms in denominator and numerator we get
\[=\left( 11\times 9\times 8 \right)\times \left( 8\times 7 \right)+\left( 11\times 3\times 4\times 7 \right)\times \left( 4\times 7 \right)+\left( 11\times 5\times 9 \right)\times \left( 5\times 2\times 7 \right)\]
\[=792\times 56+924\times 28+495\times 70\]
= 44352 + 25872 + 34650
= 104874
Thus, the number of ways of selecting 10 students chosen for the competition = 104874
Note: The possibility of mistake can be the calculation mistake since the procedure of solving involves large calculations. Hence be very careful in simplifying and cancelling the terms to get the desired result.
Last updated date: 01st Oct 2023
•
Total views: 362.1k
•
Views today: 5.62k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE
