Answer

Verified

480.9k+ views

Hint: To solve the question, we have to find out the different cases of selection considering the given conditions and use combinations and factorial formula to calculate the number of ways of selecting 10 students for the competition for the different cases analysed.

Complete step-by-step answer:

The number of ways of selecting 10 students chosen for a competition from the 12 boys and 10 girls are selecting 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls.

Since the condition is given that the 10 students chosen for a competition, include at least 4 boys and 4 girls.

The other condition given is that the 10 students chosen for the competition must include the 2 girls who won the prize last year.

The number of ways of the 2 girls can be included in the 10 students chosen for a competition, are these 2 girls included in the group of 4 or 5 or 6 girls among the 10 students chosen for the competition.

The number of ways the selection can be made = Sum of ways of choosing 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls from the 12 boys and 10 girls of a class such that 2 girls are who won the prize last year are include in the team

\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times {}^{2}{{C}_{2}} \right)\]

\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times 1 \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times 1 \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times 1 \right)\]

We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and \[n!=n\left( n-1 \right)\left( n-2 \right).....2\times 1\]

By applying the above formula, we get

\[=\dfrac{12!}{5!\left( 12-5 \right)!}\times \left( \dfrac{8!}{3!\left( 8-3 \right)!} \right)+\dfrac{12!}{6!\left( 12-6 \right)!}\times \left( \dfrac{8!}{2!\left( 8-2 \right)!} \right)+\dfrac{12!}{4!\left( 12-4 \right)!}\times \left( \dfrac{8!}{4!\left( 8-4 \right)!} \right)\]

\[=\dfrac{12!}{5!7!}\times \left( \dfrac{8!}{3!5!} \right)+\dfrac{12!}{6!6!}\times \left( \dfrac{8!}{2!6!} \right)+\dfrac{12!}{4!8!}\times \left( \dfrac{8!}{4!4!} \right)\]

\[\begin{align}

& =\dfrac{12\times 11\times 10\times 9\times 8\times 7!}{5!7!}\times \left( \dfrac{8\times 7\times 6\times 5!}{3!5!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!6!}\times \left( \dfrac{8\times 7\times 6!}{2!6!} \right) \\

& +\dfrac{12\times 11\times 10\times 9\times 8!}{4!8!}\times \left( \dfrac{8\times 7\times 6\times 5\times 4!}{4!4!} \right) \\

\end{align}\]

Since we know that the above formula of \[n!\] can also be written as \[n!=n\left( n-1 \right)\left( n-2 \right)...(n-r)!\]

\[\begin{align}

& =\dfrac{12\times 11\times 10\times 9\times 8}{5!}\times \left( \dfrac{8\times 7\times 6}{3!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6!}\times \left( \dfrac{8\times 7}{2!} \right) \\

& +\dfrac{12\times 11\times 10\times 9}{4!}\times \left( \dfrac{8\times 7\times 6\times 5}{4!} \right) \\

\end{align}\]

\[\begin{align}

& =\dfrac{12\times 11\times 10\times 9\times 8}{5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6}{3\times 2\times 1} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6\times 5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7}{2\times 1} \right) \\

& +\dfrac{12\times 11\times 10\times 9}{4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6\times 5}{4\times 3\times 2\times 1} \right) \\

\end{align}\]

By cancelling the common terms in denominator and numerator we get

\[=\left( 11\times 9\times 8 \right)\times \left( 8\times 7 \right)+\left( 11\times 3\times 4\times 7 \right)\times \left( 4\times 7 \right)+\left( 11\times 5\times 9 \right)\times \left( 5\times 2\times 7 \right)\]

\[=792\times 56+924\times 28+495\times 70\]

= 44352 + 25872 + 34650

= 104874

Thus, the number of ways of selecting 10 students chosen for the competition = 104874

Note: The possibility of mistake can be the calculation mistake since the procedure of solving involves large calculations. Hence be very careful in simplifying and cancelling the terms to get the desired result.

Complete step-by-step answer:

The number of ways of selecting 10 students chosen for a competition from the 12 boys and 10 girls are selecting 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls.

Since the condition is given that the 10 students chosen for a competition, include at least 4 boys and 4 girls.

The other condition given is that the 10 students chosen for the competition must include the 2 girls who won the prize last year.

The number of ways of the 2 girls can be included in the 10 students chosen for a competition, are these 2 girls included in the group of 4 or 5 or 6 girls among the 10 students chosen for the competition.

The number of ways the selection can be made = Sum of ways of choosing 5 boys and 5 girls or 6 boys and 4 girls or 4 boys and 6 girls from the 12 boys and 10 girls of a class such that 2 girls are who won the prize last year are include in the team

\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times {}^{2}{{C}_{2}} \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times {}^{2}{{C}_{2}} \right)\]

\[={}^{12}{{C}_{5}}\times \left( {}^{8}{{C}_{3}}\times 1 \right)+{}^{12}{{C}_{6}}\times \left( {}^{8}{{C}_{2}}\times 1 \right)+{}^{12}{{C}_{4}}\times \left( {}^{8}{{C}_{4}}\times 1 \right)\]

We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and \[n!=n\left( n-1 \right)\left( n-2 \right).....2\times 1\]

By applying the above formula, we get

\[=\dfrac{12!}{5!\left( 12-5 \right)!}\times \left( \dfrac{8!}{3!\left( 8-3 \right)!} \right)+\dfrac{12!}{6!\left( 12-6 \right)!}\times \left( \dfrac{8!}{2!\left( 8-2 \right)!} \right)+\dfrac{12!}{4!\left( 12-4 \right)!}\times \left( \dfrac{8!}{4!\left( 8-4 \right)!} \right)\]

\[=\dfrac{12!}{5!7!}\times \left( \dfrac{8!}{3!5!} \right)+\dfrac{12!}{6!6!}\times \left( \dfrac{8!}{2!6!} \right)+\dfrac{12!}{4!8!}\times \left( \dfrac{8!}{4!4!} \right)\]

\[\begin{align}

& =\dfrac{12\times 11\times 10\times 9\times 8\times 7!}{5!7!}\times \left( \dfrac{8\times 7\times 6\times 5!}{3!5!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!6!}\times \left( \dfrac{8\times 7\times 6!}{2!6!} \right) \\

& +\dfrac{12\times 11\times 10\times 9\times 8!}{4!8!}\times \left( \dfrac{8\times 7\times 6\times 5\times 4!}{4!4!} \right) \\

\end{align}\]

Since we know that the above formula of \[n!\] can also be written as \[n!=n\left( n-1 \right)\left( n-2 \right)...(n-r)!\]

\[\begin{align}

& =\dfrac{12\times 11\times 10\times 9\times 8}{5!}\times \left( \dfrac{8\times 7\times 6}{3!} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6!}\times \left( \dfrac{8\times 7}{2!} \right) \\

& +\dfrac{12\times 11\times 10\times 9}{4!}\times \left( \dfrac{8\times 7\times 6\times 5}{4!} \right) \\

\end{align}\]

\[\begin{align}

& =\dfrac{12\times 11\times 10\times 9\times 8}{5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6}{3\times 2\times 1} \right)+\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6\times 5\times 4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7}{2\times 1} \right) \\

& +\dfrac{12\times 11\times 10\times 9}{4\times 3\times 2\times 1}\times \left( \dfrac{8\times 7\times 6\times 5}{4\times 3\times 2\times 1} \right) \\

\end{align}\]

By cancelling the common terms in denominator and numerator we get

\[=\left( 11\times 9\times 8 \right)\times \left( 8\times 7 \right)+\left( 11\times 3\times 4\times 7 \right)\times \left( 4\times 7 \right)+\left( 11\times 5\times 9 \right)\times \left( 5\times 2\times 7 \right)\]

\[=792\times 56+924\times 28+495\times 70\]

= 44352 + 25872 + 34650

= 104874

Thus, the number of ways of selecting 10 students chosen for the competition = 104874

Note: The possibility of mistake can be the calculation mistake since the procedure of solving involves large calculations. Hence be very careful in simplifying and cancelling the terms to get the desired result.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Who was the Governor general of India at the time of class 11 social science CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference Between Plant Cell and Animal Cell