
From 4 officers and 8 privates, in how many ways can 6 persons be chosen such that:
(1) To include exactly one officer
(2) To include at least one officer
Answer
533.1k+ views
Hint: From the concept of permutation and combination, if we want to choose ‘r’ things from a total of ‘n’ things (n > r), then the number of ways to do so is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. Using this formula, we can solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, we have a formula which can be used to find the number of ways in which we can select r things from a total number of n things. This formula is given by,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}...............\left( 1 \right)$
In the question, it is given that there are 4 officers and 8 privates. We are required to find the number of ways in which we can choose 6 persons such that it includes exactly one officer. Also, we are required to find the number of ways in which we can choose 6 persons such that it includes at least one officer.
(1) In this part, we have to find the number of ways in which we can choose 6 persons such that it includes exactly one officer. So, we can say that among the 6 chosen persons, 1 will be an officer and other five will be privates.
From formula $\left( 1 \right)$, the number of ways in which we can choose 1 officer from a total of 4 officers is equal to,
$\begin{align}
& {}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 4-1 \right)!} \\
& \Rightarrow \dfrac{4\times 3!}{3!} \\
& \Rightarrow 4 \\
\end{align}$
Also, from formula $\left( 1 \right)$, the number of ways in which we can choose 5 privates from a total of 8 privates is equal to,
\[\begin{align}
& {}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 8-5 \right)!} \\
& \Rightarrow \dfrac{8\times 7\times 6\times 5!}{5!.3!} \\
& \Rightarrow \dfrac{8\times 7\times 6}{3\times 2\times 1} \\
& \Rightarrow 56 \\
\end{align}\]
Since we have to choose 1 officer and 5 privates, the number of ways to do so will be given by multiplying the above two obtained numbers. So, the number of ways in which we can choose 6 persons such that it includes exactly one officer is equal to $56\times 4=224$.
(2) In this part, we have to find the number of ways in which we can choose 6 persons such that it includes at least one officer. The number of ways in which we can choose at least one officer can be found by subtracting the number of ways in which we can choose 6 persons from 4 officers and 8 privates and the number of ways in which we can choose 6 persons such that it includes no officer.
Using formula $\left( 1 \right)$, the number of ways in which we can select 6 persons from 4 officers and 8 privates is equal to,
\[\begin{align}
& {}^{12}{{C}_{6}}=\dfrac{12!}{6!\left( 12-6 \right)!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!.6!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8\times 7}{6\times 5\times 4\times 3\times 2\times 1} \\
& \Rightarrow 924 \\
\end{align}\]
The number of ways we can select 6 persons such that it includes no officer will be equal to the number of ways in which we can select 6 privates out of 8 privates. Using formula $\left( 1 \right)$, we get,
\[\begin{align}
& {}^{8}{{C}_{6}}=\dfrac{8!}{6!\left( 8-6 \right)!} \\
& \Rightarrow \dfrac{8\times 7\times 6!}{6!2!} \\
& \Rightarrow 4\times 7 \\
& \Rightarrow 28 \\
\end{align}\]
As discussed in the above paragraph, the number of ways in which we can choose 6 persons such that it includes at least one officer can be found by subtracting the two obtained numbers is equal to $924-28=896$.
Note: There is a possibility that one may commit a mistake while finding the answer of the part (1). There is a possibility that one may add the two obtained numbers instead multiplying them. But since we have to select both 1 officer and 5 privates, we have to multiply the two obtained numbers.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, we have a formula which can be used to find the number of ways in which we can select r things from a total number of n things. This formula is given by,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}...............\left( 1 \right)$
In the question, it is given that there are 4 officers and 8 privates. We are required to find the number of ways in which we can choose 6 persons such that it includes exactly one officer. Also, we are required to find the number of ways in which we can choose 6 persons such that it includes at least one officer.
(1) In this part, we have to find the number of ways in which we can choose 6 persons such that it includes exactly one officer. So, we can say that among the 6 chosen persons, 1 will be an officer and other five will be privates.
From formula $\left( 1 \right)$, the number of ways in which we can choose 1 officer from a total of 4 officers is equal to,
$\begin{align}
& {}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 4-1 \right)!} \\
& \Rightarrow \dfrac{4\times 3!}{3!} \\
& \Rightarrow 4 \\
\end{align}$
Also, from formula $\left( 1 \right)$, the number of ways in which we can choose 5 privates from a total of 8 privates is equal to,
\[\begin{align}
& {}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 8-5 \right)!} \\
& \Rightarrow \dfrac{8\times 7\times 6\times 5!}{5!.3!} \\
& \Rightarrow \dfrac{8\times 7\times 6}{3\times 2\times 1} \\
& \Rightarrow 56 \\
\end{align}\]
Since we have to choose 1 officer and 5 privates, the number of ways to do so will be given by multiplying the above two obtained numbers. So, the number of ways in which we can choose 6 persons such that it includes exactly one officer is equal to $56\times 4=224$.
(2) In this part, we have to find the number of ways in which we can choose 6 persons such that it includes at least one officer. The number of ways in which we can choose at least one officer can be found by subtracting the number of ways in which we can choose 6 persons from 4 officers and 8 privates and the number of ways in which we can choose 6 persons such that it includes no officer.
Using formula $\left( 1 \right)$, the number of ways in which we can select 6 persons from 4 officers and 8 privates is equal to,
\[\begin{align}
& {}^{12}{{C}_{6}}=\dfrac{12!}{6!\left( 12-6 \right)!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!.6!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8\times 7}{6\times 5\times 4\times 3\times 2\times 1} \\
& \Rightarrow 924 \\
\end{align}\]
The number of ways we can select 6 persons such that it includes no officer will be equal to the number of ways in which we can select 6 privates out of 8 privates. Using formula $\left( 1 \right)$, we get,
\[\begin{align}
& {}^{8}{{C}_{6}}=\dfrac{8!}{6!\left( 8-6 \right)!} \\
& \Rightarrow \dfrac{8\times 7\times 6!}{6!2!} \\
& \Rightarrow 4\times 7 \\
& \Rightarrow 28 \\
\end{align}\]
As discussed in the above paragraph, the number of ways in which we can choose 6 persons such that it includes at least one officer can be found by subtracting the two obtained numbers is equal to $924-28=896$.
Note: There is a possibility that one may commit a mistake while finding the answer of the part (1). There is a possibility that one may add the two obtained numbers instead multiplying them. But since we have to select both 1 officer and 5 privates, we have to multiply the two obtained numbers.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
