# From \[4\] officers and \[8\] jawans, in how many ways can \[6\] be chosen such that it includes exactly one officer.

Last updated date: 21st Mar 2023

•

Total views: 306k

•

Views today: 4.84k

Answer

Verified

306k+ views

Hint: Calculate the number of ways to choose \[1\] officers from \[4\] officers. Calculate the number of ways to choose \[6-1=5\] jawans from \[8\] jawans. Multiply both the values to calculate the total number of ways to choose \[6\] people.

Complete step-by-step answer:

We have a group of \[4\] officers and \[8\] jawans. We have to choose \[6\] people such that it includes exactly one officer. We have to find the number of ways to do so.

We will calculate the number of ways to choose one officer from \[4\] officers. Then we will calculate the number of ways to choose remaining people from \[8\] jawans. We will then multiply both the values to calculate the total number of ways to choose \[6\] people.

We know there are \[{}^{n}{{C}_{r}}\] ways to choose \[r\] people from a group of \[n\] people. We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].

Substituting \[n=4,r=1\], we have \[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 3 \right)!}=\dfrac{4\times 3!}{3!}=4\] ways to choose one officer from \[4\] officers.

As we have to choose total \[6\] people and we have already chosen one officer, the number of jawans to be chosen \[=6-1=5\]. So, we will now choose \[5\] jawans from \[8\] jawans.

Substituting \[n=8,r=5\], we have \[{}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 3 \right)!}=\dfrac{8\times 7\times 6\times 5!}{5!\times 3!}=\dfrac{8\times 7\times 6}{3\times 2}=56\] ways to choose \[5\] jawans from \[8\] jawans.

To calculate the total number of ways to choose \[6\] people according to the given data, we will multiply both the values of choosing one officer from \[4\] officers and \[5\] jawans from \[8\] jawans.

Thus, the total number of ways to choose \[6\] people according to the given data \[=4\times 56=224\].

Hence, we can choose \[6\] people such that it includes exactly one officer is \[224\].

Note: In this question, we are basically calculating all the possible combinations to choose people. One must keep in mind that we are not considering the arrangement of chosen people on this question. If we count the arrangement of people, we will get an incorrect answer.

Complete step-by-step answer:

We have a group of \[4\] officers and \[8\] jawans. We have to choose \[6\] people such that it includes exactly one officer. We have to find the number of ways to do so.

We will calculate the number of ways to choose one officer from \[4\] officers. Then we will calculate the number of ways to choose remaining people from \[8\] jawans. We will then multiply both the values to calculate the total number of ways to choose \[6\] people.

We know there are \[{}^{n}{{C}_{r}}\] ways to choose \[r\] people from a group of \[n\] people. We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].

Substituting \[n=4,r=1\], we have \[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 3 \right)!}=\dfrac{4\times 3!}{3!}=4\] ways to choose one officer from \[4\] officers.

As we have to choose total \[6\] people and we have already chosen one officer, the number of jawans to be chosen \[=6-1=5\]. So, we will now choose \[5\] jawans from \[8\] jawans.

Substituting \[n=8,r=5\], we have \[{}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 3 \right)!}=\dfrac{8\times 7\times 6\times 5!}{5!\times 3!}=\dfrac{8\times 7\times 6}{3\times 2}=56\] ways to choose \[5\] jawans from \[8\] jawans.

To calculate the total number of ways to choose \[6\] people according to the given data, we will multiply both the values of choosing one officer from \[4\] officers and \[5\] jawans from \[8\] jawans.

Thus, the total number of ways to choose \[6\] people according to the given data \[=4\times 56=224\].

Hence, we can choose \[6\] people such that it includes exactly one officer is \[224\].

Note: In this question, we are basically calculating all the possible combinations to choose people. One must keep in mind that we are not considering the arrangement of chosen people on this question. If we count the arrangement of people, we will get an incorrect answer.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE