Answer
Verified
491.7k+ views
Hint: Calculate the number of ways to choose \[1\] officers from \[4\] officers. Calculate the number of ways to choose \[6-1=5\] jawans from \[8\] jawans. Multiply both the values to calculate the total number of ways to choose \[6\] people.
Complete step-by-step answer:
We have a group of \[4\] officers and \[8\] jawans. We have to choose \[6\] people such that it includes exactly one officer. We have to find the number of ways to do so.
We will calculate the number of ways to choose one officer from \[4\] officers. Then we will calculate the number of ways to choose remaining people from \[8\] jawans. We will then multiply both the values to calculate the total number of ways to choose \[6\] people.
We know there are \[{}^{n}{{C}_{r}}\] ways to choose \[r\] people from a group of \[n\] people. We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Substituting \[n=4,r=1\], we have \[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 3 \right)!}=\dfrac{4\times 3!}{3!}=4\] ways to choose one officer from \[4\] officers.
As we have to choose total \[6\] people and we have already chosen one officer, the number of jawans to be chosen \[=6-1=5\]. So, we will now choose \[5\] jawans from \[8\] jawans.
Substituting \[n=8,r=5\], we have \[{}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 3 \right)!}=\dfrac{8\times 7\times 6\times 5!}{5!\times 3!}=\dfrac{8\times 7\times 6}{3\times 2}=56\] ways to choose \[5\] jawans from \[8\] jawans.
To calculate the total number of ways to choose \[6\] people according to the given data, we will multiply both the values of choosing one officer from \[4\] officers and \[5\] jawans from \[8\] jawans.
Thus, the total number of ways to choose \[6\] people according to the given data \[=4\times 56=224\].
Hence, we can choose \[6\] people such that it includes exactly one officer is \[224\].
Note: In this question, we are basically calculating all the possible combinations to choose people. One must keep in mind that we are not considering the arrangement of chosen people on this question. If we count the arrangement of people, we will get an incorrect answer.
Complete step-by-step answer:
We have a group of \[4\] officers and \[8\] jawans. We have to choose \[6\] people such that it includes exactly one officer. We have to find the number of ways to do so.
We will calculate the number of ways to choose one officer from \[4\] officers. Then we will calculate the number of ways to choose remaining people from \[8\] jawans. We will then multiply both the values to calculate the total number of ways to choose \[6\] people.
We know there are \[{}^{n}{{C}_{r}}\] ways to choose \[r\] people from a group of \[n\] people. We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Substituting \[n=4,r=1\], we have \[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 3 \right)!}=\dfrac{4\times 3!}{3!}=4\] ways to choose one officer from \[4\] officers.
As we have to choose total \[6\] people and we have already chosen one officer, the number of jawans to be chosen \[=6-1=5\]. So, we will now choose \[5\] jawans from \[8\] jawans.
Substituting \[n=8,r=5\], we have \[{}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 3 \right)!}=\dfrac{8\times 7\times 6\times 5!}{5!\times 3!}=\dfrac{8\times 7\times 6}{3\times 2}=56\] ways to choose \[5\] jawans from \[8\] jawans.
To calculate the total number of ways to choose \[6\] people according to the given data, we will multiply both the values of choosing one officer from \[4\] officers and \[5\] jawans from \[8\] jawans.
Thus, the total number of ways to choose \[6\] people according to the given data \[=4\times 56=224\].
Hence, we can choose \[6\] people such that it includes exactly one officer is \[224\].
Note: In this question, we are basically calculating all the possible combinations to choose people. One must keep in mind that we are not considering the arrangement of chosen people on this question. If we count the arrangement of people, we will get an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE