Answer

Verified

450.6k+ views

Hint: Calculate the number of ways to choose \[1\] officers from \[4\] officers. Calculate the number of ways to choose \[6-1=5\] jawans from \[8\] jawans. Multiply both the values to calculate the total number of ways to choose \[6\] people.

Complete step-by-step answer:

We have a group of \[4\] officers and \[8\] jawans. We have to choose \[6\] people such that it includes exactly one officer. We have to find the number of ways to do so.

We will calculate the number of ways to choose one officer from \[4\] officers. Then we will calculate the number of ways to choose remaining people from \[8\] jawans. We will then multiply both the values to calculate the total number of ways to choose \[6\] people.

We know there are \[{}^{n}{{C}_{r}}\] ways to choose \[r\] people from a group of \[n\] people. We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].

Substituting \[n=4,r=1\], we have \[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 3 \right)!}=\dfrac{4\times 3!}{3!}=4\] ways to choose one officer from \[4\] officers.

As we have to choose total \[6\] people and we have already chosen one officer, the number of jawans to be chosen \[=6-1=5\]. So, we will now choose \[5\] jawans from \[8\] jawans.

Substituting \[n=8,r=5\], we have \[{}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 3 \right)!}=\dfrac{8\times 7\times 6\times 5!}{5!\times 3!}=\dfrac{8\times 7\times 6}{3\times 2}=56\] ways to choose \[5\] jawans from \[8\] jawans.

To calculate the total number of ways to choose \[6\] people according to the given data, we will multiply both the values of choosing one officer from \[4\] officers and \[5\] jawans from \[8\] jawans.

Thus, the total number of ways to choose \[6\] people according to the given data \[=4\times 56=224\].

Hence, we can choose \[6\] people such that it includes exactly one officer is \[224\].

Note: In this question, we are basically calculating all the possible combinations to choose people. One must keep in mind that we are not considering the arrangement of chosen people on this question. If we count the arrangement of people, we will get an incorrect answer.

Complete step-by-step answer:

We have a group of \[4\] officers and \[8\] jawans. We have to choose \[6\] people such that it includes exactly one officer. We have to find the number of ways to do so.

We will calculate the number of ways to choose one officer from \[4\] officers. Then we will calculate the number of ways to choose remaining people from \[8\] jawans. We will then multiply both the values to calculate the total number of ways to choose \[6\] people.

We know there are \[{}^{n}{{C}_{r}}\] ways to choose \[r\] people from a group of \[n\] people. We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].

Substituting \[n=4,r=1\], we have \[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 3 \right)!}=\dfrac{4\times 3!}{3!}=4\] ways to choose one officer from \[4\] officers.

As we have to choose total \[6\] people and we have already chosen one officer, the number of jawans to be chosen \[=6-1=5\]. So, we will now choose \[5\] jawans from \[8\] jawans.

Substituting \[n=8,r=5\], we have \[{}^{8}{{C}_{5}}=\dfrac{8!}{5!\left( 3 \right)!}=\dfrac{8\times 7\times 6\times 5!}{5!\times 3!}=\dfrac{8\times 7\times 6}{3\times 2}=56\] ways to choose \[5\] jawans from \[8\] jawans.

To calculate the total number of ways to choose \[6\] people according to the given data, we will multiply both the values of choosing one officer from \[4\] officers and \[5\] jawans from \[8\] jawans.

Thus, the total number of ways to choose \[6\] people according to the given data \[=4\times 56=224\].

Hence, we can choose \[6\] people such that it includes exactly one officer is \[224\].

Note: In this question, we are basically calculating all the possible combinations to choose people. One must keep in mind that we are not considering the arrangement of chosen people on this question. If we count the arrangement of people, we will get an incorrect answer.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE