
Four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are placed at the four vertices A, B, C and D, respectively of a square of side 1 m. Find the position of the centre of mass of the particles.

Answer
412.3k+ views
Hint:The centre of mass of the system of particles is defined as the position where the all the mass of the system of particles is considered to be. It is the point where if linear force is applied on the system then there will not be any angular acceleration.
Formula used:The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Complete step by step solution:
It is given in the problem that four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are placed at the four vertices A, B,C and D, respectively of a square of side 1 m and we need to find the position of the centre of mass of the particles.
The mass of the four particles are${m_1} = 1kg$, ${m_2} = 2kg$, ${m_3} = 3kg$ and ${m_4} = 4kg$. Also the position vector of the particles are ${\vec r_1} = 0\hat i + 0\hat j$, ${\vec r_2} = \hat i$, ${\vec r_3} = \hat j$ and ${\vec r_4} = \hat i + \hat j$.
The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Replacing the mass and the position vector in the above formula we get,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{1 \times \left( {0\hat i + 0\hat j} \right) + 2\left( {\hat i} \right) + 3\hat j + 4\left( {\hat i + \hat j} \right)}}{{1 + 2 + 3 + 4}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{2\hat i + 4\hat i + 3\hat j + 4\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{6\hat i + 7\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
So the centre of mass of the system of particles is equal to${\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
Note:The students are advised to understand and remember the formula of the centre of mass as it is very useful in solving problems like this. The centre of mass can be present outside the physical bodies. The centre of mass is an inertial frame and it is at rest compared to the origin of the coordinate system.
Formula used:The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Complete step by step solution:
It is given in the problem that four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are placed at the four vertices A, B,C and D, respectively of a square of side 1 m and we need to find the position of the centre of mass of the particles.
The mass of the four particles are${m_1} = 1kg$, ${m_2} = 2kg$, ${m_3} = 3kg$ and ${m_4} = 4kg$. Also the position vector of the particles are ${\vec r_1} = 0\hat i + 0\hat j$, ${\vec r_2} = \hat i$, ${\vec r_3} = \hat j$ and ${\vec r_4} = \hat i + \hat j$.
The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Replacing the mass and the position vector in the above formula we get,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{1 \times \left( {0\hat i + 0\hat j} \right) + 2\left( {\hat i} \right) + 3\hat j + 4\left( {\hat i + \hat j} \right)}}{{1 + 2 + 3 + 4}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{2\hat i + 4\hat i + 3\hat j + 4\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{6\hat i + 7\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
So the centre of mass of the system of particles is equal to${\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
Note:The students are advised to understand and remember the formula of the centre of mass as it is very useful in solving problems like this. The centre of mass can be present outside the physical bodies. The centre of mass is an inertial frame and it is at rest compared to the origin of the coordinate system.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
