Answer
Verified
394k+ views
Hint:The centre of mass of the system of particles is defined as the position where the all the mass of the system of particles is considered to be. It is the point where if linear force is applied on the system then there will not be any angular acceleration.
Formula used:The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Complete step by step solution:
It is given in the problem that four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are placed at the four vertices A, B,C and D, respectively of a square of side 1 m and we need to find the position of the centre of mass of the particles.
The mass of the four particles are${m_1} = 1kg$, ${m_2} = 2kg$, ${m_3} = 3kg$ and ${m_4} = 4kg$. Also the position vector of the particles are ${\vec r_1} = 0\hat i + 0\hat j$, ${\vec r_2} = \hat i$, ${\vec r_3} = \hat j$ and ${\vec r_4} = \hat i + \hat j$.
The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Replacing the mass and the position vector in the above formula we get,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{1 \times \left( {0\hat i + 0\hat j} \right) + 2\left( {\hat i} \right) + 3\hat j + 4\left( {\hat i + \hat j} \right)}}{{1 + 2 + 3 + 4}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{2\hat i + 4\hat i + 3\hat j + 4\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{6\hat i + 7\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
So the centre of mass of the system of particles is equal to${\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
Note:The students are advised to understand and remember the formula of the centre of mass as it is very useful in solving problems like this. The centre of mass can be present outside the physical bodies. The centre of mass is an inertial frame and it is at rest compared to the origin of the coordinate system.
Formula used:The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Complete step by step solution:
It is given in the problem that four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are placed at the four vertices A, B,C and D, respectively of a square of side 1 m and we need to find the position of the centre of mass of the particles.
The mass of the four particles are${m_1} = 1kg$, ${m_2} = 2kg$, ${m_3} = 3kg$ and ${m_4} = 4kg$. Also the position vector of the particles are ${\vec r_1} = 0\hat i + 0\hat j$, ${\vec r_2} = \hat i$, ${\vec r_3} = \hat j$ and ${\vec r_4} = \hat i + \hat j$.
The formula of the centre of mass is given by,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
Where centre of mass is ${\vec r_{cm}}$ and mass of different particles are ${m_1}$, ${m_2}$ etc. and the different vector positions are ${\vec r_1}$, ${\vec r_2}$ and etc.
Replacing the mass and the position vector in the above formula we get,
$ \Rightarrow {\vec r_{cm}} = \dfrac{{{m_1}{{\vec r}_1} + {m_2}{{\vec r}_2} + \cdot \cdot \cdot \cdot \cdot + {m_n}{{\vec r}_n}}}{{{m_1} + {m_2} \cdot \cdot \cdot \cdot {m_n}}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{1 \times \left( {0\hat i + 0\hat j} \right) + 2\left( {\hat i} \right) + 3\hat j + 4\left( {\hat i + \hat j} \right)}}{{1 + 2 + 3 + 4}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{2\hat i + 4\hat i + 3\hat j + 4\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = \dfrac{{6\hat i + 7\hat j}}{{10}}$
$ \Rightarrow {\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
So the centre of mass of the system of particles is equal to${\vec r_{cm}} = 0 \cdot 6\hat i + 0 \cdot 7\hat j$.
Note:The students are advised to understand and remember the formula of the centre of mass as it is very useful in solving problems like this. The centre of mass can be present outside the physical bodies. The centre of mass is an inertial frame and it is at rest compared to the origin of the coordinate system.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE