Answer
Verified
389.4k+ views
Hint: First of all, we shall note some important terms from the given question and they are persons, soup and tea.
Here, it is given that a total of forty-three people went to a canteen. Out of forty-three, $ 18 $ persons took soup only (i.e. they took soup not tea). And $ 8 $ took tea only (i.e. they took tea not soup).Also, $ 5 $ persons didn’t take anything (i.e. they didn’t buy soup and tea).
Now, our question is to calculate how many members took tea and also we are asked to represent it in a Venn-diagram. When we use circles to show the relationships among a group of things, this type of illustration is generally known as a Venn-diagram.
Formula used:
\[n(A \cap B) = n(U) - n(A \cap \bar B) - n(\bar A \cap B) - n(\overline {A \cup B} )\]
$ n\left( B \right) = n\left( {A \cap B} \right) + n\left( {\bar A \cap B} \right) $
Complete step by step answer:
Let us name the set of all $ 43 $ persons as\[U\] .
Let \[A\] be the set of all people who took only soup not tea.
Let \[B\] be the set of all people who took only tea, not soup.
We shall denote the above assumptions mathematically using given information.
The total number of persons,
$ n\left( U \right) = 43 $
The number of persons, who took only soup,
$ n\left( {A \cap \bar B} \right) = 18 $
The number of persons, who took only tea,
\[\;\;n\left( {\bar A \cap B} \right) = 8\]
The number of persons, who took nothing,
$ n\left( {\overline {A \cup B} } \right) = 5 $
Now, we need to substitute these values in the first formula.
\[n(A \cap B) = n(U) - n(A \cap \bar B) - n(\bar A \cap B) - n(\overline {A \cup B} )\]
$ = 43 - 18 - 8 - 5 $
$ = 12 $
Using second formula, we get
$ n\left( B \right) = n\left( {A \cap B} \right) + n\left( {\bar A \cap B} \right) $
$ = 12 + 8 $
$ = 20 $
Therefore, $ 20 $ people took tea.
Then, we need to represent it in a Venn-diagram.
This is the required Venn-diagram.
Note: When we use circles to show the relationships among a group of things, this type of illustration is generally known as a Venn-diagram. Our question is to calculate how many members took tea and also we are asked to represent it in a Venn-diagram. Here, $ 20 $ people took tea.
Here, it is given that a total of forty-three people went to a canteen. Out of forty-three, $ 18 $ persons took soup only (i.e. they took soup not tea). And $ 8 $ took tea only (i.e. they took tea not soup).Also, $ 5 $ persons didn’t take anything (i.e. they didn’t buy soup and tea).
Now, our question is to calculate how many members took tea and also we are asked to represent it in a Venn-diagram. When we use circles to show the relationships among a group of things, this type of illustration is generally known as a Venn-diagram.
Formula used:
\[n(A \cap B) = n(U) - n(A \cap \bar B) - n(\bar A \cap B) - n(\overline {A \cup B} )\]
$ n\left( B \right) = n\left( {A \cap B} \right) + n\left( {\bar A \cap B} \right) $
Complete step by step answer:
Let us name the set of all $ 43 $ persons as\[U\] .
Let \[A\] be the set of all people who took only soup not tea.
Let \[B\] be the set of all people who took only tea, not soup.
We shall denote the above assumptions mathematically using given information.
The total number of persons,
$ n\left( U \right) = 43 $
The number of persons, who took only soup,
$ n\left( {A \cap \bar B} \right) = 18 $
The number of persons, who took only tea,
\[\;\;n\left( {\bar A \cap B} \right) = 8\]
The number of persons, who took nothing,
$ n\left( {\overline {A \cup B} } \right) = 5 $
Now, we need to substitute these values in the first formula.
\[n(A \cap B) = n(U) - n(A \cap \bar B) - n(\bar A \cap B) - n(\overline {A \cup B} )\]
$ = 43 - 18 - 8 - 5 $
$ = 12 $
Using second formula, we get
$ n\left( B \right) = n\left( {A \cap B} \right) + n\left( {\bar A \cap B} \right) $
$ = 12 + 8 $
$ = 20 $
Therefore, $ 20 $ people took tea.
Then, we need to represent it in a Venn-diagram.
This is the required Venn-diagram.
Note: When we use circles to show the relationships among a group of things, this type of illustration is generally known as a Venn-diagram. Our question is to calculate how many members took tea and also we are asked to represent it in a Venn-diagram. Here, $ 20 $ people took tea.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE